TY - JOUR A1 - Erbayraktar, Zubeyde A1 - Yilmaz, Osman A1 - Temiz Artmann, Aysegül A1 - Cehreli, Ruksan A1 - Coker, Canan T1 - Effects of Selenium Supplementation on Antioxidant Defense and Glucose Homeostasis in Experimental Diabetes Mellitus JF - Biological Trace Element Research Y1 - 2007 SN - 1559-0720 VL - 118 IS - 3 SP - 217 EP - 226 ER - TY - CHAP A1 - Duong, Minh Tuan A1 - Seifarth, Volker A1 - Temiz Artmann, Aysegül A1 - Artmann, Gerhard A1 - Staat, Manfred ED - Artmann, Gerhard ED - Temiz Artmann, Aysegül ED - Zhubanova, Azhar A. ED - Digel, Ilya T1 - Growth Modelling Promoting Mechanical Stimulation of Smooth Muscle Cells of Porcine Tubular Organs in a Fibrin-PVDF Scaffold T2 - Biological, Physical and Technical Basics of Cell Engineering N2 - Reconstructive surgery and tissue replacements like ureters or bladders reconstruction have been recently studied, taking into account growth and remodelling of cells since living cells are capable of growing, adapting, remodelling or degrading and restoring in order to deform and respond to stimuli. Hence, shapes of ureters or bladders and their microstructure change during growth and these changes strongly depend on external stimuli such as training. We present the mechanical stimulation of smooth muscle cells in a tubular fibrin-PVDFA scaffold and the modelling of the growth of tissue by stimuli. To this end, mechanotransduction was performed with a kyphoplasty balloon catheter that was guided through the lumen of the tubular structure. The bursting pressure was examined to compare the stability of the incubated tissue constructs. The results showed the significant changes on tissues with training by increasing the burst pressure as a characteristic mechanical property and the smooth muscle cells were more oriented with uniformly higher density. Besides, the computational growth models also exhibited the accurate tendencies of growth of the cells under different external stimuli. Such models may lead to design standards for the better layered tissue structure in reconstructing of tubular organs characterized as composite materials such as intestines, ureters and arteries. KW - Mechanical simulation KW - Growth modelling KW - Ureter KW - Bladder KW - Reconstruction Y1 - 2018 SN - 978-981-10-7904-7 U6 - http://dx.doi.org/10.1007/978-981-10-7904-7_9 SP - 209 EP - 232 PB - Springer CY - Singapore ER - TY - JOUR A1 - Digel, Ilya A1 - Zerlin, Kay A1 - Temiz Artmann, Aysegül A1 - Engels, S. T1 - Protein dynamics in thermosensation JF - Regenerative medicine. 2 (2007), H. 5 Y1 - 2007 SN - 1746-0751 N1 - Proceedings of the 3rd World Congress on Regenerative Medicine. October 18-20, 2007. Leipzig, Germany SP - 533 EP - 533 ER - TY - JOUR A1 - Digel, Ilya A1 - Trzewik, Jürgen A1 - Demirci, Taylan A1 - Temiz Artmann, Aysegül T1 - Response of fibroblasts to cyclic mechanical stress : a proteome approach / Digel, I. ; Trzewik, J. ; Demirci, T. ; Temiz Artmann, A. ; Artmann, G. M. JF - Biomedizinische Technik. 49 (2004), H. Erg.-Bd. 2 Y1 - 2004 SN - 0932-4666 SP - 1042 EP - 1043 ER - TY - JOUR A1 - Digel, Ilya A1 - Temiz Artmann, Aysegül A1 - Nishikawa, K. A1 - Cook, M. T1 - Bactericidal effects of plasma-generated cluster ions JF - Medical and Biological Engineering and Computing. 43 (2005), H. 6 Y1 - 2005 SN - 1741-0444 SP - 800 EP - 807 ER - TY - JOUR A1 - Digel, Ilya A1 - Temiz Artmann, Aysegül A1 - Nishikawa, K. A1 - Artmann, Gerhard T1 - Cluster air-ion effects on bacteria and moulds JF - Biomedizinische Technik. 49 (2004), H. Erg.-Bd. 2 Y1 - 2004 SN - 0932-4666 SP - 1040 EP - 1041 ER - TY - JOUR A1 - Digel, Ilya A1 - Temiz Artmann, Aysegül T1 - The emperor's new body : seeking for a blueprint of limb regeneration in humans JF - Stem cell engineering : principles and applications / Gerhard M. Artmann ... eds. Y1 - 2011 SN - 978-3-642-11864-7 SP - 3 EP - 37 PB - Springer CY - Berlin [u.a.] ER - TY - CHAP A1 - Digel, Ilya A1 - Sadykov, R. A1 - Temiz Artmann, Aysegül A1 - Artmann, Gerhard T1 - Changes in intestinal microflora in rats induced by oral exposure to low lead (II) concentrations T2 - Lead Exposure and Poisoning: Clinical Symptoms, Medical Management and Preventive Strategies Y1 - 2015 SN - 9781634826990 SP - 75 EP - 99 PB - Nova Science Publ. ER - TY - JOUR A1 - Digel, Ilya A1 - Demirci, Taylan A1 - Temiz Artmann, Aysegül A1 - Nishikawa, K. T1 - Free Radical Nature of the Bactericidal Effect of Plasma-Generated Cluster Ions (PCIs) JF - Biomedizinische Technik. 49 (2004), H. Erg.-Bd. 2 Y1 - 2004 SN - 0932-4666 SP - 982 EP - 983 ER - TY - JOUR A1 - Digel, Ilya A1 - Akimbekov, N. A1 - Turalieva, M. A1 - Mansurov, Z. A1 - Temiz Artmann, Aysegül A1 - Eshibaev, A. A1 - Zhubanova, A. T1 - Usage of Carbonized Plant Wastes for Purification of Aqueous Solutions JF - Journal of Industrial Technology and Engineering Y1 - 2013 VL - 2 IS - 07 SP - 47 EP - 54 ER - TY - JOUR A1 - Demirci, Taylan A1 - Kurulgan Demirci, Eylem A1 - Trzewik, Jürgen A1 - Linder, Peter A1 - Digel, Ilya A1 - Artmann, Gerhard A1 - Sakizli, Meral A1 - Temiz Artmann, Aysegül T1 - Gene expression profile analysis of 3T3/NIH fibroblasts after one hour mechanical stress JF - IUBMB Life. 61 (2009), H. 3 Y1 - 2009 SN - 1521-6543 N1 - Abstracts: Turkish Society of Molecular Medicine, Third International Congress of Molecular Medicine, May 5-8, 2009, Istanbul, Turkey SP - 311 EP - 312 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Demirci, T. A1 - Trzewik, J. A1 - Linder, Peter A1 - Digel, Ilya A1 - Artmann, Gerhard A1 - Temiz Artmann, Aysegül T1 - Mechanical Stimulation of 3T3 Fibroblasts Activates Genes: ITGB5 and p53 Responses as Quantified on the mRNA Level JF - Biomedizinische Technik . 49 (2004), H. Erg.-Bd. 2 Y1 - 2004 SN - 0932-4666 SP - 1030 EP - 1031 ER - TY - JOUR A1 - Demirci, T. A1 - Trzewik, J. A1 - Linder, Peter A1 - Artmann, Gerhard A1 - Temiz Artmann, Aysegül T1 - Mechanical Stimulation of 3T3 Fibroblasts Activates Genes: Real Time PCR Products and Suppliers by Comparison JF - Biomedizinische Technik . 49 (2004), H. Erg.-Bd. 2 Y1 - 2004 SN - 0932-4666 SP - 1046 EP - 1047 ER - TY - JOUR A1 - Cehreli, Ruksan A1 - Akpinar, Hale A1 - Temiz Artmann, Aysegül A1 - Sagol, Ozgul T1 - Effects of Glutamine and Omega-3 Fatty Acids on Erythrocyte Deformability and Oxidative Damage in Rat Model of Enterocolitis JF - Gastroenterology Research Y1 - 2015 U6 - http://dx.doi.org/10.14740/gr683w SN - 1918-2813 VL - 8 IS - 5 SP - 265 EP - 273 ER - TY - JOUR A1 - Bayer, Robin A1 - Temiz Artmann, Aysegül A1 - Digel, Ilya A1 - Falkenstein, Julia A1 - Artmann, Gerhard A1 - Creutz, Till A1 - Hescheler, Jürgen T1 - Mechano-pharmacological testing of L-Type Ca²⁺ channel modulators via human vascular celldrum model JF - Cellular Physiology and Biochemistry N2 - Background/Aims: This study aimed to establish a precise and well-defined working model, assessing pharmaceutical effects on vascular smooth muscle cell monolayer in-vitro. It describes various analysis techniques to determine the most suitable to measure the biomechanical impact of vasoactive agents by using CellDrum technology. Methods: The so-called CellDrum technology was applied to analyse the biomechanical properties of confluent human aorta muscle cells (haSMC) in monolayer. The cell generated tensions deviations in the range of a few N/m² are evaluated by the CellDrum technology. This study focuses on the dilative and contractive effects of L-type Ca²⁺ channel agonists and antagonists, respectively. We analyzed the effects of Bay K8644, nifedipine and verapamil. Three different measurement modes were developed and applied to determine the most appropriate analysis technique for the study purpose. These three operation modes are called, particular time mode" (PTM), "long term mode" (LTM) and "real-time mode" (RTM). Results: It was possible to quantify the biomechanical response of haSMCs to the addition of vasoactive agents using CellDrum technology. Due to the supplementation of 100nM Bay K8644, the tension increased approximately 10.6% from initial tension maximum, whereas, the treatment with nifedipine and verapamil caused a significant decrease in cellular tension: 10nM nifedipine decreased the biomechanical stress around 6,5% and 50nM verapamil by 2,8%, compared to the initial tension maximum. Additionally, all tested measurement modes provide similar results while focusing on different analysis parameters. Conclusion: The CellDrum technology allows highly sensitive biomechanical stress measurements of cultured haSMC monolayers. The mechanical stress responses evoked by the application of vasoactive calcium channel modulators were quantified functionally (N/m²). All tested operation modes resulted in equal findings, whereas each mode features operation-related data analysis. Y1 - 2020 U6 - http://dx.doi.org/10.33594/000000225 SN - 1421-9778 VL - 54 SP - 371 EP - 383 PB - Cell Physiol Biochem Press CY - Düsseldorf ER - TY - CHAP A1 - Bayer, Robin A1 - Hescheler, Jürgen A1 - Artmann, Gerhard A1 - Temiz Artmann, Aysegül ED - Staat, Manfred ED - Erni, Daniel T1 - Treating arterial hypertension in a cell culture well T2 - 3rd YRA MedTech Symposium 2019 : May 24 / 2019 / FH AachenW N2 - Hypertension describes the pathological increase of blood pressure, which is most commonly associated with the increase of vascular wall stiffness [1]. Referring to the “Deutsche Bluthochdruck Liga” this pathology shows a growing trend in our aging society. In order to find novel pharmacological and probably personalized treatments, we want to present a functional approach to study biomechanical properties of a human aortic vascular model. In this method review we will give an overview of recent studies which were carried out with the CellDrum technology [2] and underline the added value to already existing standard procedures known from the field of physiology. Herein described CellDrum technology is a system to measure functional mechanical properties of cell monolayers and thin tissue constructs in-vitro. Additionally, the CellDrum enables to elucidate the mechanical response of cells to pharmacological drugs, toxins and vasoactive agents. Due to its highly flexible polymer support, cells can also be mechanically stimulated by steady and cyclic biaxial stretching. Y1 - 2019 SN - 978-3-940402-22-6 U6 - http://dx.doi.org/10.17185/duepublico/48750 SP - 5 EP - 6 PB - Universität Duisburg-Essen CY - Duisburg ER - TY - JOUR A1 - Bassam, Rasha A1 - Hescheler, Jürgen A1 - Temiz Artmann, Aysegül A1 - Artmann, Gerhard A1 - Digel, Ilya T1 - Effects of spermine NONOate and ATP on the thermal stability of hemoglobin JF - BMC Biophysics N2 - Background Minor changes in protein structure induced by small organic and inorganic molecules can result in significant metabolic effects. The effects can be even more profound if the molecular players are chemically active and present in the cell in considerable amounts. The aim of our study was to investigate effects of a nitric oxide donor (spermine NONOate), ATP and sodium/potassium environment on the dynamics of thermal unfolding of human hemoglobin (Hb). The effect of these molecules was examined by means of circular dichroism spectrometry (CD) in the temperature range between 25°C and 70°C. The alpha-helical content of buffered hemoglobin samples (0.1 mg/ml) was estimated via ellipticity change measurements at a heating rate of 1°C/min. Results Major results were: 1) spermine NONOate persistently decreased the hemoglobin unfolding temperature T u irrespectively of the Na + /K + environment, 2) ATP instead increased the unfolding temperature by 3°C in both sodium-based and potassium-based buffers and 3) mutual effects of ATP and NO were strongly influenced by particular buffer ionic compositions. Moreover, the presence of potassium facilitated a partial unfolding of alpha-helical structures even at room temperature. Conclusion The obtained data might shed more light on molecular mechanisms and biophysics involved in the regulation of protein activity by small solutes in the cell. KW - Nitric Oxide Donor KW - NONOate KW - Circular Dichroism KW - Nitric Oxide Y1 - 2012 U6 - http://dx.doi.org/10.1186/2046-1682-5-16 SN - 2046-1682 VL - 5 PB - BioMed Central CY - London ER - TY - JOUR A1 - Bassam, Rasha A1 - Digel, Ilya A1 - Hescheler, Jürgen A1 - Temiz Artmann, Aysegül A1 - Artmann, Gerhard T1 - Effects of spermine NONOate and ATP on protein aggregation: light scattering evidences JF - BMC Biophysics Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?10.1186/2046-1682-6-1 SN - 2046-1682 SP - 1 EP - 14 PB - BioMed Central CY - London ER - TY - BOOK A1 - Artmann, Gerhard A1 - Temiz Artmann, Aysegül A1 - Zhubanova, Azhar A. A1 - Digel, Ilya ED - Artmann, Gerhard ED - Temiz Artmann, Aysegül ED - Zhubanova, Azhar A. ED - Digel, Ilya T1 - Biological, physical and technical basics of cell engineering Y1 - 2018 SN - 978-981-10-7903-0 PB - Springer CY - Singapore ER - TY - CHAP A1 - Artmann, Gerhard A1 - Meruvu, Haritha A1 - Kizildag, Sefa A1 - Temiz Artmann, Aysegül ED - Artmann, Gerhard ED - Temiz Artmann, Aysegül ED - Zhubanova, Azhar A. ED - Digel, Ilya T1 - Functional Toxicology and Pharmacology Test of Cell Induced Mechanical Tensile Stress in 2D and 3D Tissue Cultures T2 - Biological, Physical and Technical Basics of Cell Engineering N2 - Mechanical forces/tensile stresses are critical determinants of cellular growth, differentiation and migration patterns in health and disease. The innovative “CellDrum technology” was designed for measuring mechanical tensile stress of cultured cell monolayers/thin tissue constructs routinely. These are cultivated on very thin silicone membranes in the so-called CellDrum. The cell layers adhere firmly to the membrane and thus transmit the cell forces generated. A CellDrum consists of a cylinder which is sealed from below with a 4 μm thick, biocompatible, functionalized silicone membrane. The weight of cell culture medium bulbs the membrane out downwards. Membrane indentation is measured. When cells contract due to drug action, membrane, cells and medium are lifted upwards. The induced indentation changes allow for lateral drug induced mechanical tension quantification of the micro-tissues. With hiPS-induced (human) Cardiomyocytes (CM) the CellDrum opens new perspectives of individualized cardiac drug testing. Here, monolayers of self-beating hiPS-CMs were grown in CellDrums. Rhythmic contractions of the hiPS-cells induce membrane up-and-down deflections. The recorded cycles allow for single beat amplitude, single beat duration, integration of the single beat amplitude over the beat time and frequency analysis. Dose effects of agonists and antagonists acting on Ca2+ channels were sensitively and highly reproducibly observed. Data were consistent with published reference data as far as they were available. The combination of the CellDrum technology with hiPS-Cardiomyocytes offers a fast, facile and precise system for pharmacological and toxicological studies. It allows new preclinical basic as well as applied research in pharmacolgy and toxicology. Y1 - 2018 SN - 978-981-10-7904-7 U6 - http://dx.doi.org/10.1007/978-981-10-7904-7_7 SP - 157 EP - 192 PB - Springer CY - Singapore ER -