TY - JOUR A1 - Yoshinobu, Tatsuo A1 - Miyamoto, Ko-ichiro A1 - Werner, Frederik A1 - Poghossian, Arshak A1 - Wagner, Torsten A1 - Schöning, Michael Josef T1 - Light-addressable potentiometric sensors for quantitative spatial imaging of chemical species JF - Annual Review of Analytical Chemistry N2 - A light-addressable potentiometric sensor (LAPS) is a semiconductor-based chemical sensor, in which a measurement site on the sensing surface is defined by illumination. This light addressability can be applied to visualize the spatial distribution of pH or the concentration of a specific chemical species, with potential applications in the fields of chemistry, materials science, biology, and medicine. In this review, the features of this chemical imaging sensor technology are compared with those of other technologies. Instrumentation, principles of operation, and various measurement modes of chemical imaging sensor systems are described. The review discusses and summarizes state-of-the-art technologies, especially with regard to the spatial resolution and measurement speed; for example, a high spatial resolution in a submicron range and a readout speed in the range of several tens of thousands of pixels per second have been achieved with the LAPS. The possibility of combining this technology with microfluidic devices and other potential future developments are discussed. Y1 - 2017 U6 - http://dx.doi.org/10.1146/annurev-anchem-061516-045158 SN - 1936-1327 VL - 10 SP - 225 EP - 246 PB - Annual Reviews CY - Palo Alto, Calif. ER - TY - CHAP A1 - Yoshinobu, Tatsuo A1 - Krause, Steffi A1 - Miyamoto, Ko-ichiro A1 - Werner, Frederik A1 - Poghossian, Arshak A1 - Wagner, Torsten A1 - Schöning, Michael Josef T1 - (Bio-)chemical Sensing and Imaging by LAPS and SPIM T2 - Label-free biosensing: advanced materials, devices and applications N2 - The light-addressable potentiometric sensor (LAPS) and scanning photo-induced impedance microscopy (SPIM) are two closely related methods to visualise the distributions of chemical species and impedance, respectively, at the interface between the sensing surface and the sample solution. They both have the same field-effect structure based on a semiconductor, which allows spatially resolved and label-free measurement of chemical species and impedance in the form of a photocurrent signal generated by a scanning light beam. In this article, the principles and various operation modes of LAPS and SPIM, functionalisation of the sensing surface for measuring various species, LAPS-based chemical imaging and high-resolution sensors based on silicon-on-sapphire substrates are described and discussed, focusing on their technical details and prospective applications. KW - Chemical imaging KW - Field-effect device KW - Light-addressable potentiometric sensor KW - Potentiometry Y1 - 2018 SN - 978-3-319-75219-8 SP - 103 EP - 132 PB - Springer CY - Cham ER - TY - JOUR A1 - Yoshinobu, T. A1 - Ecken, H. A1 - Poghossian, Arshak A1 - Simonis, A. A1 - Iwasaki, H. A1 - Lüth, H. A1 - Schöning, Michael Josef T1 - Constant-current-mode LAPS (CLAPS) for the detection of penicillin JF - Electroanalysis. 13 (2001), H. 8-9 Y1 - 2001 SN - 1040-0397 SP - 733 EP - 736 ER - TY - JOUR A1 - Yoshinobu, T. A1 - Ecken, H. A1 - Poghossian, Arshak A1 - Lüth, H. A1 - Iwasaki, H. A1 - Schöning, Michael Josef T1 - Alternative sensor materials for light-addressable potentiometric sensors JF - Sensors and Actuators B. 76 (2001), H. 1-3 Y1 - 2001 SN - 0925-4005 SP - 388 EP - 392 ER - TY - CHAP A1 - Wu, Chunsheng A1 - Poghossian, Arshak A1 - Werner, Frederik A1 - Bronder, Thomas A1 - Bäcker, Matthias A1 - Wang, Ping A1 - Schöning, Michael Josef T1 - An application of a scanning light-addressable potentiometric sensor for label-free DNA detection T2 - 11. Dresdner Sensor-Symposium : 9.-11.12.2013 Y1 - 2013 SN - 978-3-9813484-5-3 SP - 164 EP - 168 ER - TY - JOUR A1 - Wu, Chunsheng A1 - Poghossian, Arshak A1 - Bronder, Thomas A1 - Schöning, Michael Josef T1 - Sensing of double-stranded DNA molecules by their intrinsic molecular charge using the light-addressable potentiometric sensor JF - Sensors and Actuators B: Chemical N2 - A multi-spot light-addressable potentiometric sensor (LAPS), which belongs to the family of semiconductor field-effect devices, was applied for label-free detection of double-stranded deoxyribonucleic acid (dsDNA) molecules by their intrinsic molecular charge. To reduce the distance between the DNA charge and sensor surface and thus, to enhance the electrostatic coupling between the dsDNA molecules and the LAPS, the negatively charged dsDNA molecules were electrostatically adsorbed onto the gate surface of the LAPS covered with a positively charged weak polyelectrolyte layer of PAH (poly(allylamine hydrochloride)). The surface potential changes in each spot of the LAPS, induced by the layer-by-layer adsorption of a PAH/dsDNA bilayer, were recorded by means of photocurrent-voltage and constant-photocurrent measurements. In addition, the surface morphology of the gate surface before and after consecutive electrostatic adsorption of PAH and dsDNA layers was studied by atomic force microscopy measurements. Moreover, fluorescence microscopy was used to verify the successful adsorption of dsDNA molecules onto the PAH-modified LAPS surface. A high sensor signal of 25 mV was registered after adsorption of 10 nM dsDNA molecules. The lower detection limit is down to 0.1 nM dsDNA. The obtained results demonstrate that the PAH-modified LAPS device provides a convenient and rapid platform for the direct label-free electrical detection of in-solution hybridized dsDNA molecules. KW - Layer-by-layer adsorption KW - Poly(allylamine hydrochloride) KW - Label-free detection KW - DNA biosensor KW - LAPS KW - Field effect Y1 - 2016 U6 - http://dx.doi.org/10.1016/j.snb.2016.02.004 SN - 0925-4005 IS - 229 SP - 506 EP - 512 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Wu, Chunsheng A1 - Bronder, Thomas A1 - Poghossian, Arshak A1 - Werner, Frederik A1 - Schöning, Michael Josef T1 - Label-free detection of DNA using light-addressable potentiometric sensor modified with a positively charged polyelectrolyte layer JF - Nanoscale N2 - A multi-spot (16 spots) light-addressable potentiometric sensor (MLAPS) consisting of an Al–p-Si–SiO2 structure modified with a weak polyelectrolyte layer of PAH (poly(allylamine hydrochloride)) was applied for the label-free electrical detection of DNA (deoxyribonucleic acid) immobilization and hybridization by the intrinsic molecular charge for the first time. To achieve a preferentially flat orientation of DNA strands and thus, to reduce the distance between the DNA charge and MLAPS surface, the negatively charged probe single-stranded DNAs (ssDNA) were electrostatically adsorbed onto the positively charged PAH layer using a simple layer-by-layer (LbL) technique. In this way, more DNA charge can be positioned within the Debye length, yielding a higher sensor signal. The surface potential changes in each spot induced due to the surface modification steps (PAH adsorption, probe ssDNA immobilization, hybridization with complementary target DNA (cDNA), non-specific adsorption of mismatched ssDNA) were determined from the shifts of photocurrent–voltage curves along the voltage axis. A high sensor signal of 83 mV was registered after immobilization of probe ssDNA onto the PAH layer. The hybridization signal increases from 5 mV to 32 mV with increasing the concentration of cDNA from 0.1 nM to 5 μM. In contrast, a small signal of 5 mV was recorded in the case of non-specific adsorption of fully mismatched ssDNA (5 μM). The obtained results demonstrate the potential of the MLAPS in combination with the simple and rapid LbL immobilization technique as a promising platform for the future development of multi-spot light-addressable label-free DNA chips with direct electrical readout. Y1 - 2015 U6 - http://dx.doi.org/10.1039/C4NR07225A VL - 14 IS - 7 SP - 6143 EP - 6150 PB - Royal Society of Chemistry (RSC) CY - Cambridge ER - TY - JOUR A1 - Wu, Chunsheng A1 - Bronder, Thomas A1 - Poghossian, Arshak A1 - Werner, Frederik A1 - Bäcker, Matthias A1 - Schöning, Michael Josef T1 - Label-free electrical detection of DNA with a multi-spot LAPS: First step towards light-addressable DNA chips JF - Physica status solidi A : Applications and materials science N2 - A multi-spot (4 × 4 spots) light-addressable potentiometric sensor (MLAPS) consisting of an Al–p-Si–SiO2 structure has been applied for the label-free electrical detection of DNA (deoxyribonucleic acid) immobilization and hybridization by the intrinsic molecular charge for the first time. Single-stranded probe ssDNA molecules (20 bases) were covalently immobilized onto the silanized SiO2 gate surface. The unspecific adsorption of mismatch ssDNA on the MLAPS gate surface was blocked by bovine serum albumin molecules. To reduce the screening effect and to achieve a high sensor signal, the measurements were performed in a low ionic-strength solution. The photocurrent–voltage (I–V) curves were simultaneously recorded on all 16 spots after each surface functionalization step. Large shifts of I–V curves of 25 mV were registered after the DNA immobilization and hybridization event. In contrast, a small potential shift (∼5 mV) was observed in case of mismatch ssDNA, revealing good specificity of the sensor. The obtained results demonstrate the potential of the MLAPS as promising transducer platform for the multi-spot label-free electrical detection of DNA molecules by their intrinsic molecular charge. Y1 - 2014 U6 - http://dx.doi.org/10.1002/pssa.201330442 SN - 1521-396X (E-Journal); 1862-6319 (E-Journal); 0031-8965 (Print); 1862-6300 (Print) VL - 211 IS - 6 SP - 1423 EP - 1428 PB - Wiley-VCH CY - Weinheim ER - TY - CHAP A1 - Wu, Chunsheng A1 - Bronder, Thomas A1 - Poghossian, Arshak A1 - Schöning, Michael Josef T1 - DNA-hybridization detection using light-addressable potentiometric sensor modified with gold layer T2 - Sensoren und Messsysteme 2014 ; Beiträge der 17. GMA/ITG-Fachtagung vom 3. bis 4. Juni 2014 in Nürnberg. (ITG-Fachbericht ; 250) Y1 - 2014 SN - 978-3-8007-3622-5 SP - 1 EP - 4 PB - VDE-Verl. CY - Düsseldorf ER - TY - JOUR A1 - Wendlandt, Tim A1 - Koch, Claudia A1 - Britz, Beate A1 - Liedek, Anke A1 - Schmidt, Nora A1 - Werner, Stefan A1 - Gleba, Yuri A1 - Vahidpour, Farnoosh A1 - Welden, Melanie A1 - Poghossian, Arshak A1 - Schöning, Michael Josef T1 - Facile Purification and Use of Tobamoviral Nanocarriers for Antibody-Mediated Display of a Two-Enzyme System JF - Viruses N2 - Immunosorbent turnip vein clearing virus (TVCV) particles displaying the IgG-binding domains D and E of Staphylococcus aureus protein A (PA) on every coat protein (CP) subunit (TVCVPA) were purified from plants via optimized and new protocols. The latter used polyethylene glycol (PEG) raw precipitates, from which virions were selectively re-solubilized in reverse PEG concentration gradients. This procedure improved the integrity of both TVCVPA and the wild-type subgroup 3 tobamovirus. TVCVPA could be loaded with more than 500 IgGs per virion, which mediated the immunocapture of fluorescent dyes, GFP, and active enzymes. Bi-enzyme ensembles of cooperating glucose oxidase and horseradish peroxidase were tethered together on the TVCVPA carriers via a single antibody type, with one enzyme conjugated chemically to its Fc region, and the other one bound as a target, yielding synthetic multi-enzyme complexes. In microtiter plates, the TVCVPA-displayed sugar-sensing system possessed a considerably increased reusability upon repeated testing, compared to the IgG-bound enzyme pair in the absence of the virus. A high coverage of the viral adapters was also achieved on Ta2O5 sensor chip surfaces coated with a polyelectrolyte interlayer, as a prerequisite for durable TVCVPA-assisted electrochemical biosensing via modularly IgG-assembled sensor enzymes. KW - biosensor KW - horseradish peroxidase (HRP) KW - glucose oxidase (GOx) KW - enzyme cascade KW - turnip vein clearing virus (TVCV) KW - tobacco mosaic virus (TMV) Y1 - 2023 U6 - http://dx.doi.org/doi.org/10.3390/v15091951 SN - 1999-4915 N1 - This article belongs to the Special Issue "Tobamoviruses 2023" VL - 9 IS - 15 PB - MDPI CY - Basel ER - TY - CHAP A1 - Welden, Melanie A1 - Severins, Robin A1 - Poghossian, Arshak A1 - Wege, Christina A1 - Siegert, Petra A1 - Keusgen, Michael A1 - Schöning, Michael Josef T1 - Studying the immobilization of acetoin reductase with Tobacco mosaic virus particles on capacitive field-effect sensors T2 - 2022 IEEE International Symposium on Olfaction and Electronic Nose (ISOEN) N2 - A capacitive electrolyte-insulator-semiconductor (EISCAP) biosensor modified with Tobacco mosaic virus (TMV) particles for the detection of acetoin is presented. The enzyme acetoin reductase (AR) was immobilized on the surface of the EISCAP using TMV particles as nanoscaffolds. The study focused on the optimization of the TMV-assisted AR immobilization on the Ta 2 O 5 -gate EISCAP surface. The TMV-assisted acetoin EISCAPs were electrochemically characterized by means of leakage-current, capacitance-voltage, and constant-capacitance measurements. The TMV-modified transducer surface was studied via scanning electron microscopy. KW - Tobacco mosaic virus KW - acetoin KW - capacitive field-effect biosensor KW - enzyme immobilization Y1 - 2022 SN - 978-1-6654-5860-3 (Online) SN - 978-1-6654-5861-0 (Print) U6 - http://dx.doi.org/10.1109/ISOEN54820.2022.9789657 N1 - IEEE International Symposium on Olfaction and Electronic Nose (ISOEN), 29 May 2022 - 01 June 2022, Aveiro, Portugal. PB - IEEE ER - TY - JOUR A1 - Welden, Melanie A1 - Severins, Robin A1 - Poghossian, Arshak A1 - Wege, Christina A1 - Bongaerts, Johannes A1 - Siegert, Petra A1 - Keusgen, Michael A1 - Schöning, Michael Josef T1 - Detection of acetoin and diacetyl by a tobacco mosaic virus-assisted field-effect biosensor JF - Chemosensors N2 - Acetoin and diacetyl have a major impact on the flavor of alcoholic beverages such as wine or beer. Therefore, their measurement is important during the fermentation process. Until now, gas chromatographic techniques have typically been applied; however, these require expensive laboratory equipment and trained staff, and do not allow for online monitoring. In this work, a capacitive electrolyte–insulator–semiconductor sensor modified with tobacco mosaic virus (TMV) particles as enzyme nanocarriers for the detection of acetoin and diacetyl is presented. The enzyme acetoin reductase from Alkalihalobacillus clausii DSM 8716ᵀ is immobilized via biotin–streptavidin affinity, binding to the surface of the TMV particles. The TMV-assisted biosensor is electrochemically characterized by means of leakage–current, capacitance–voltage, and constant capacitance measurements. In this paper, the novel biosensor is studied regarding its sensitivity and long-term stability in buffer solution. Moreover, the TMV-assisted capacitive field-effect sensor is applied for the detection of diacetyl for the first time. The measurement of acetoin and diacetyl with the same sensor setup is demonstrated. Finally, the successive detection of acetoin and diacetyl in buffer and in diluted beer is studied by tuning the sensitivity of the biosensor using the pH value of the measurement solution. Y1 - 2022 U6 - http://dx.doi.org/10.3390/chemosensors10060218 SN - 2227-9040 N1 - This article belongs to the Special Issue "Nanostructured Devices for Biochemical Sensing" VL - 10 IS - 6 PB - MDPI CY - Basel ER - TY - JOUR A1 - Welden, Melanie A1 - Poghossian, Arshak A1 - Vahidpour, Farnoosh A1 - Wendlandt, Tim A1 - Keusgen, Michael A1 - Wege, Christina A1 - Schöning, Michael Josef T1 - Towards multi-analyte detection with field-effect capacitors modified with tobacco mosaic virus bioparticles as enzyme nanocarriers JF - Biosensors N2 - Utilizing an appropriate enzyme immobilization strategy is crucial for designing enzyme-based biosensors. Plant virus-like particles represent ideal nanoscaffolds for an extremely dense and precise immobilization of enzymes, due to their regular shape, high surface-to-volume ratio and high density of surface binding sites. In the present work, tobacco mosaic virus (TMV) particles were applied for the co-immobilization of penicillinase and urease onto the gate surface of a field-effect electrolyte-insulator-semiconductor capacitor (EISCAP) with a p-Si-SiO₂-Ta₂O₅ layer structure for the sequential detection of penicillin and urea. The TMV-assisted bi-enzyme EISCAP biosensor exhibited a high urea and penicillin sensitivity of 54 and 85 mV/dec, respectively, in the concentration range of 0.1–3 mM. For comparison, the characteristics of single-enzyme EISCAP biosensors modified with TMV particles immobilized with either penicillinase or urease were also investigated. The surface morphology of the TMV-modified Ta₂O₅-gate was analyzed by scanning electron microscopy. Additionally, the bi-enzyme EISCAP was applied to mimic an XOR (Exclusive OR) enzyme logic gate. KW - urease KW - enzyme-logic gate KW - bi-enzyme biosensor KW - capacitive field-effect sensor KW - tobacco mosaic virus (TMV) KW - penicillinase Y1 - 2022 U6 - http://dx.doi.org/10.3390/bios12010043 SN - 2079-6374 N1 - This article belongs to the Special Issue "Biosensors: 10th Anniversary Feature Papers" VL - 12 IS - 1 PB - MDPI CY - Basel ER - TY - CHAP A1 - Weil, M. A1 - Poghossian, Arshak A1 - Schöning, Michael Josef A1 - Cherstvy, A. T1 - Electrical monitoring of layer-by-layer adsorption of oppositely charged macromolecules by means of capacitive field-effect devices Y1 - 2012 SN - 978-3-9813484-2-2 U6 - http://dx.doi.org/10.5162/IMCS2012/P2.5.2 SP - 1575 EP - 1578 ER - TY - JOUR A1 - Wagner, Torsten A1 - Maris, Rob J. A1 - Ackermann, Hans-Josef A1 - Otto, Ralph A1 - Beging, Stefan A1 - Poghossian, Arshak A1 - Schöning, Michael Josef T1 - Handheld measurement device for field-effect sensor structures: Practical evaluation and limitations JF - Sensors and Actuators B: Chemical . 127 (2007), H. 1 Y1 - 2007 SN - 0925-4005 SP - 217 EP - 223 ER - TY - JOUR A1 - Wagner, Torsten A1 - Beging, Stefan A1 - Rotter, L. A1 - Poghossian, Arshak A1 - Biselli, Manfred A1 - Zang, Werner A1 - Schöning, Michael Josef T1 - Online-Messsysteme für die automatisierte Charakterisierung von feldeffektbasierten Biosensoren JF - 8. Dresdner Sensor-Symposium : Sensoren für Umwelt, Klima und Sicherheit, Biosensoren und Biosysteme, Sensoren und Sensorsysteme für die Prozesstechnik, Trends in der Sensortechnik, Materialentwicklung für die Sensorik; 8. Dresdner Sensor-Symposium, 10. - 12. Dezember 2007, Dresden / Gerald Gerlach ... (Hg.) Y1 - 2007 SN - 978-3-940046-45-1 N1 - Dresdner Sensor-Symposium <8, 2007, Dresden> ; Dresdner Beiträge zur Sensorik ; 29 SP - 257 EP - 260 PB - TUDpress, Verl. der Wissenschaften CY - Dresden ER - TY - JOUR A1 - Turek, M. A1 - Keusgen, M. A1 - Poghossian, Arshak A1 - Mulchandani, A. A1 - Wang, J. A1 - Schöning, Michael Josef T1 - Enzyme-modified electrolyte-insulator-semiconductor sensors JF - Journal of Contemporary Physics. 43 (2008), H. 2 Y1 - 2008 SN - 1934-9378 N1 - Armenian Academy of Sciences SP - 82 EP - 85 ER - TY - JOUR A1 - Thust, M. A1 - Poghossian, Arshak A1 - Schöning, Michael Josef A1 - Naser, S. A1 - Müller-Veggian, Mattea A1 - Kordos, P. A1 - Lüth, H. T1 - Crosssensitivity of a capacitive penicillin sensor combined with a diffusion barrier JF - Proceedings : The Hague, The Netherlands, September 12 - 15, 1999 / [ed. by M. Bartek]. Vol 1. Y1 - 1999 SN - 90-76699-02-X N1 - Eurosensors ; (13, 1999, 's-Gravenhage) ; Eurosensors ; (13 : ; 1999.09.12-15 : ; The Hague) ; European Conference on Solid-State Transducers ; (13 : ; 1999.09.12-15 : ; The Hague) SP - 573 EP - 576 CY - The Hague, The Netherlands ER - TY - JOUR A1 - Thust, M. A1 - Poghossian, Arshak A1 - Schöning, Michael Josef A1 - Naser, S. A1 - Müller-Veggian, Mattea A1 - Kordos, P. A1 - Lüth, H. T1 - Cross-sensitivity of a capacitive penicillin sensor combined with a diffusion barrier JF - Proceedings : The Hague, The Netherlands, September 12 - 15, 1999 / [ed. by M. Bartek]. - Vol 1. Y1 - 1999 SN - 90-76699-02-X N1 - Eurosensors <13, 1999, 's-Gravenhage> ; Eurosensors <13, 1999, The Hague> ; European Conference on Solid-State Transducers <13, 1999, The Hague> SP - 573 EP - 576 CY - The Hague, The Netherlands ER - TY - JOUR A1 - Spelthahn, Heiko A1 - Poghossian, Arshak A1 - Schöning, Michael Josef T1 - Self-aligned nanogaps and nanochannels via conventional photolithography and pattern-size reduction technique JF - Electrochimica Acta. 54 (2009), H. 25 Sp. Iss. SI Y1 - 2009 SN - 0013-4686 SP - 6010 EP - 6014 ER -