TY - JOUR A1 - Welden, Melanie A1 - Severins, Robin A1 - Poghossian, Arshak A1 - Wege, Christina A1 - Bongaerts, Johannes A1 - Siegert, Petra A1 - Keusgen, Michael A1 - Schöning, Michael Josef T1 - Detection of acetoin and diacetyl by a tobacco mosaic virus-assisted field-effect biosensor JF - Chemosensors N2 - Acetoin and diacetyl have a major impact on the flavor of alcoholic beverages such as wine or beer. Therefore, their measurement is important during the fermentation process. Until now, gas chromatographic techniques have typically been applied; however, these require expensive laboratory equipment and trained staff, and do not allow for online monitoring. In this work, a capacitive electrolyte–insulator–semiconductor sensor modified with tobacco mosaic virus (TMV) particles as enzyme nanocarriers for the detection of acetoin and diacetyl is presented. The enzyme acetoin reductase from Alkalihalobacillus clausii DSM 8716ᵀ is immobilized via biotin–streptavidin affinity, binding to the surface of the TMV particles. The TMV-assisted biosensor is electrochemically characterized by means of leakage–current, capacitance–voltage, and constant capacitance measurements. In this paper, the novel biosensor is studied regarding its sensitivity and long-term stability in buffer solution. Moreover, the TMV-assisted capacitive field-effect sensor is applied for the detection of diacetyl for the first time. The measurement of acetoin and diacetyl with the same sensor setup is demonstrated. Finally, the successive detection of acetoin and diacetyl in buffer and in diluted beer is studied by tuning the sensitivity of the biosensor using the pH value of the measurement solution. Y1 - 2022 U6 - http://dx.doi.org/10.3390/chemosensors10060218 SN - 2227-9040 N1 - This article belongs to the Special Issue "Nanostructured Devices for Biochemical Sensing" VL - 10 IS - 6 PB - MDPI CY - Basel ER - TY - JOUR A1 - Muschallik, Lukas A1 - Molinnus, Denise A1 - Jablonski, Melanie A1 - Kipp, Carina Ronja A1 - Bongaerts, Johannes A1 - Pohl, Martina A1 - Wagner, Torsten A1 - Schöning, Michael Josef A1 - Selmer, Thorsten A1 - Siegert, Petra T1 - Synthesis of α-hydroxy ketones and vicinal (R, R)-diols by Bacillus clausii DSM 8716ᵀ butanediol dehydrogenase JF - RSC Advances N2 - α-hydroxy ketones (HK) and 1,2-diols are important building blocks for fine chemical synthesis. Here, we describe the R-selective 2,3-butanediol dehydrogenase from B. clausii DSM 8716ᵀ (BcBDH) that belongs to the metal-dependent medium chain dehydrogenases/reductases family (MDR) and catalyzes the selective asymmetric reduction of prochiral 1,2-diketones to the corresponding HK and, in some cases, the reduction of the same to the corresponding 1,2-diols. Aliphatic diketones, like 2,3-pentanedione, 2,3-hexanedione, 5-methyl-2,3-hexanedione, 3,4-hexanedione and 2,3-heptanedione are well transformed. In addition, surprisingly alkyl phenyl dicarbonyls, like 2-hydroxy-1-phenylpropan-1-one and phenylglyoxal are accepted, whereas their derivatives with two phenyl groups are not substrates. Supplementation of Mn²⁺ (1 mM) increases BcBDH's activity in biotransformations. Furthermore, the biocatalytic reduction of 5-methyl-2,3-hexanedione to mainly 5-methyl-3-hydroxy-2-hexanone with only small amounts of 5-methyl-2-hydroxy-3-hexanone within an enzyme membrane reactor is demonstrated. Y1 - 2020 U6 - http://dx.doi.org/10.1039/D0RA02066D SN - 2046-2069 VL - 10 SP - 12206 EP - 12216 PB - Royal Society of Chemistry (RSC) CY - Cambridge ER - TY - RPRT A1 - Haeger, Gerrit A1 - Bongaerts, Johannes A1 - Siegert, Petra T1 - Abschlussbericht Teil II: Eingehende Darstellung Neue biobasierte Lipopeptide aus nachhaltiger Produktion (LipoPep) Y1 - 2023 N1 - Förderkennzeichen: 13FH256PA6 Titel: FHprofUnt 2016: Neue biobasierte Lipopeptide aus nachhaltiger Produktion Laufzeit: 01.02.2019 – 31.10.2022 ER -