TY - JOUR A1 - Stadler, Andreas M. A1 - Zerlin, Kay A1 - Digel, Ilya A1 - Büldt, Georg A1 - Zaccai, Guiseppe A1 - Artmann, Gerhard T1 - Dynamics and interactions of hemoglobin in red blood cells JF - Tissue Engineering Part A. 14 (2008), H. 5 Y1 - 2008 SN - 1937-3341 N1 - TERMIS EU 2008 Porto Meeting June 22–26, 2008 Porto Congress Center–Alfândega Portugal SP - 724 EP - 724 ER - TY - JOUR A1 - Weigand, Christoph T1 - Defining Precisions for Reliable Measurement and Estimation Procedures JF - Economic Quality Control. 24 (2009), H. 1 Y1 - 2009 SN - 0940-5151 SP - 5 EP - 33 PB - De Gruyter CY - Berlin ER - TY - JOUR A1 - Weigand, Christoph T1 - Economically Optimal Inspection Policy with Geometrical Adaption JF - Journal of Applied Statistics. 30 (2003), H. 5 Y1 - 2003 SN - 0266-4763 N1 - weitere ISSN 1360-0532 (E) SP - 555 EP - 569 ER - TY - JOUR A1 - Weigand, Christoph T1 - Economically Optimal Inspection Policy with Arithmetical Adaption JF - Applied stochastic models and data analysis / [10th International Symposium on Applied Stochastic Models and Analysis, June 12-15 2001, Université Technologique de Compiègne] ; editors Gérard Govaert, Jacques Janssen, Nikolaos Limnios. Y1 - 2001 N1 - ASDMA 2001 SP - 1010 EP - 1015 PB - Université Technologique de Compiègne CY - Compiègne ER - TY - JOUR A1 - Valero, Daniel A1 - Bung, Daniel Bernhard A1 - Erpicum, Sebastien A1 - Peltier, Yann A1 - Dewals, Benjamin T1 - Unsteady shallow meandering flows in rectangular reservoirs: a modal analysis of URANS modelling JF - Journal of Hydro-environment Research N2 - Shallow flows are common in natural and human-made environments. Even for simple rectangular shallow reservoirs, recent laboratory experiments show that the developing flow fields are particularly complex, involving large-scale turbulent structures. For specific combinations of reservoir size and hydraulic conditions, a meandering jet can be observed. While some aspects of this pseudo-2D flow pattern can be reproduced using a 2D numerical model, new 3D simulations, based on the unsteady Reynolds-Averaged Navier-Stokes equations, show consistent advantages as presented herein. A Proper Orthogonal Decomposition was used to characterize the four most energetic modes of the meandering jet at the free surface level, allowing comparison against experimental data and 2D (depth-averaged) numerical results. Three different isotropic eddy viscosity models (RNG k-ε, k-ε, k-ω) were tested. The 3D models accurately predicted the frequency of the modes, whereas the amplitudes of the modes and associated energy were damped for the friction-dominant cases and augmented for non-frictional ones. The performance of the three turbulence models remained essentially similar, with slightly better predictions by RNG k-ε model in the case with the highest Reynolds number. Finally, the Q-criterion was used to identify vortices and study their dynamics, assisting on the identification of the differences between: i) the three-dimensional phenomenon (here reproduced), ii) its two-dimensional footprint in the free surface (experimental observations) and iii) the depth-averaged case (represented by 2D models). KW - coherent structures KW - hydraulic modelling KW - model performance KW - Proper Orthogonal Decomposition KW - Q-criterion Y1 - 2022 U6 - https://doi.org/10.1016/j.jher.2022.03.002 SN - 1570-6443 IS - In Press PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Dachwald, Bernd T1 - Optimization of very-low-thrust trajectories using evolutionary neurocontrol JF - Acta Astronautica N2 - Searching optimal interplanetary trajectories for low-thrust spacecraft is usually a difficult and time-consuming task that involves much experience and expert knowledge in astrodynamics and optimal control theory. This is because the convergence behavior of traditional local optimizers, which are based on numerical optimal control methods, depends on an adequate initial guess, which is often hard to find, especially for very-low-thrust trajectories that necessitate many revolutions around the sun. The obtained solutions are typically close to the initial guess that is rarely close to the (unknown) global optimum. Within this paper, trajectory optimization problems are attacked from the perspective of artificial intelligence and machine learning. Inspired by natural archetypes, a smart global method for low-thrust trajectory optimization is proposed that fuses artificial neural networks and evolutionary algorithms into so-called evolutionary neurocontrollers. This novel method runs without an initial guess and does not require the attendance of an expert in astrodynamics and optimal control theory. This paper details how evolutionary neurocontrol works and how it could be implemented. The performance of the method is assessed for three different interplanetary missions with a thrust to mass ratio <0.15mN/kg (solar sail and nuclear electric). Y1 - 2005 SN - 1879-2030 VL - 57 IS - 2-8 SP - 175 EP - 185 PB - Elsevier CY - Amsterdam [u.a.] ER - TY - JOUR A1 - Krämer, Marco A1 - Bongaerts, Johannes A1 - Bovenberg, Roel A1 - Kremer, Susanne A1 - Müller, Ulrike A1 - Orf, Sonja A1 - Wubbolts, Marcel A1 - Raeven, Leon T1 - Metabolic engineering for microbial production of shikimic acid JF - Metabolic engineering Y1 - 2003 SN - 1096-7184 (E-Journal); 1096-7176 (Print) VL - Vol. 5 IS - Iss. 4 SP - 277 EP - 283 ER - TY - CHAP A1 - Niemueller, Tim A1 - Lakemeyer, Gerhard A1 - Ferrein, Alexander ED - Finzi, Alberto T1 - The RoboCup Logistics League as a Benchmark for Planning in Robotics T2 - Proceedings of the 3rd Workshop on Planning and Robotics (PlanRob-15); Jerusalem, Israel 7-8/6/2015 Y1 - 2015 SP - 63 EP - 68 ER - TY - JOUR A1 - Staat, Manfred A1 - Baroud, G. A1 - Topcu, M. A1 - Sponagel, Stefan T1 - Soft Materials in Technology and Biology – Characteristics, Properties, and Parameter Identification JF - Bioengineering in Cell and Tissue Research / Artmann, Gerhard M. ; Chien, Shu (Eds.) Y1 - 2008 SN - 978-3-540-75408-4 SP - 253 EP - 315 PB - Springer CY - Berlin ER - TY - JOUR A1 - Akimbekov, Nuraly S. A1 - Digel, Ilya A1 - Tastambek, K. T. A1 - Zhubanova, A. A. T1 - Biocompatibility of carbonized rice husk with a rat heart cells line H9c2 JF - Experimental Biology Y1 - 2013 SN - 1563-0218 N1 - Original in russischer Sprache VL - 59 IS - 3/1 SP - 23 EP - 25 ER - TY - JOUR A1 - Hoffstadt, Kevin A1 - Cheenakula, Dheeraja A1 - Nikolausz, Marcell A1 - Krafft, Simone A1 - Harms, Hauke A1 - Kuperjans, Isabel T1 - Design and construction of a new reactor for flexible biomethanation of hydrogen JF - Fermentation N2 - The increasing share of renewable electricity in the grid drives the need for sufficient storage capacity. Especially for seasonal storage, power-to-gas can be a promising approach. Biologically produced methane from hydrogen produced from surplus electricity can be used to substitute natural gas in the existing infrastructure. Current reactor types are not or are poorly optimized for flexible methanation. Therefore, this work proposes a new reactor type with a plug flow reactor (PFR) design. Simulations in COMSOL Multiphysics ® showed promising properties for operation in laminar flow. An experiment was conducted to support the simulation results and to determine the gas fraction of the novel reactor, which was measured to be 29%. Based on these simulations and experimental results, the reactor was constructed as a 14 m long, 50 mm diameter tube with a meandering orientation. Data processing was established, and a step experiment was performed. In addition, a kLa of 1 h−1 was determined. The results revealed that the experimental outcomes of the type of flow and gas fractions are in line with the theoretical simulation. The new design shows promising properties for flexible methanation and will be tested. KW - methanation KW - plug flow reactor KW - bubble column KW - bio-methane KW - power-to-gas Y1 - 2023 U6 - https://doi.org/10.3390/fermentation9080774 SN - 2311-5637 N1 - The article belongs to the Special Issue Fermentation Processes: Modeling, Optimization and Control VL - 9 IS - 8 SP - 1 EP - 16 PB - MDPI CY - Basel ER - TY - CHAP A1 - Niederwestberg, Stefan A1 - Schneider, Falko A1 - Teixeira Boura, Cristiano José A1 - Herrmann, Ulf T1 - Introduction to a direct irradiated transparent tube particle receiver T2 - SOLARPACES 2020 N2 - New materials often lead to innovations and advantages in technical applications. This also applies to the particle receiver proposed in this work that deploys high-temperature and scratch resistant transparent ceramics. With this receiver design, particles are heated through direct-contact concentrated solar irradiance while flowing downwards through tubular transparent ceramics from top to bottom. In this paper, the developed particle receiver as well as advantages and disadvantages are described. Investigations on the particle heat-up characteristics from solar irradiance were carried out with DEM simulations which indicate that particle temperatures can reach up to 1200 K. Additionally, a simulation model was set up for investigating the dynamic behavior. A test receiver at laboratory scale has been designed and is currently being built. In upcoming tests, the receiver test rig will be used to validate the simulation results. The design and the measurement equipment is described in this work. KW - Solar irradiance KW - Ceramics Y1 - 2022 SN - 978-0-7354-4195-8 U6 - https://doi.org/10.1063/5.0086735 SN - 1551-7616 (online) SN - 0094-243X (print) N1 - SOLARPACES 2020: 26th International Conference on Concentrating Solar Power and Chemical Energy Systems, 28 September–2 October 2020, Freiburg, Germany IS - 2445 / 1 PB - AIP conference proceedings / American Institute of Physics CY - Melville, NY ER - TY - JOUR A1 - Götten, Falk A1 - Finger, Felix A1 - Havermann, Marc A1 - Braun, Carsten A1 - Marino, M. A1 - Bil, C. T1 - Full configuration drag estimation of short-to-medium range fixed-wing UAVs and its impact on initial sizing optimization JF - CEAS Aeronautical Journal N2 - The paper presents the derivation of a new equivalent skin friction coefficient for estimating the parasitic drag of short-to-medium range fixed-wing unmanned aircraft. The new coefficient is derived from an aerodynamic analysis of ten different unmanned aircraft used for surveillance, reconnaissance, and search and rescue missions. The aircraft is simulated using a validated unsteady Reynolds-averaged Navier Stokes approach. The UAV’s parasitic drag is significantly influenced by the presence of miscellaneous components like fixed landing gears or electro-optical sensor turrets. These components are responsible for almost half of an unmanned aircraft’s total parasitic drag. The new equivalent skin friction coefficient accounts for these effects and is significantly higher compared to other aircraft categories. It is used to initially size an unmanned aircraft for a typical reconnaissance mission. The improved parasitic drag estimation yields a much heavier unmanned aircraft when compared to the sizing results using available drag data of manned aircraft. KW - Parasitic drag KW - UAV KW - CFD KW - Aircraft sizing Y1 - 2021 U6 - https://doi.org/10.1007/s13272-021-00522-w SN - 1869-5590 (Online) SN - 1869-5582 (Print) N1 - Corresponding author: Falk Götten VL - 12 SP - 589 EP - 603 PB - Springer CY - Berlin ER - TY - CHAP A1 - Bagheri, Mohsen A1 - Schleupen, Josef A1 - Dahmann, Peter A1 - Kallweit, Stephan T1 - A multi-functional device applying for the safe maintenance at high-altitude on wind turbines T2 - 20th International Conference on Composite Materials : Copenhagen, 19 - 24th July 2015 Y1 - 2015 SP - 1 EP - 6 ER - TY - CHAP A1 - Abbas, Karim A1 - Thurn, Laura A1 - Kessler, Julia A1 - Eichler, Fabian T1 - Basic research of the consideration of additive manufactured lattice structures under thermoand fluid dynamic loads T2 - Modern technologies in manufacturing (MTeM 2019) Y1 - 2019 U6 - https://doi.org/10.1051/matecconf/201929901009 N1 - MATEC Web of Conferences 299; MTeM 2019 VL - 299 IS - Article 01009 ER - TY - JOUR A1 - Bhattarai, Aroj A1 - Staat, Manfred T1 - A computational study of organ relocation after laparoscopic pectopexy to repair posthysterectomy vaginal vault prolapse JF - Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization Y1 - 2019 U6 - https://doi.org/10.1080/21681163.2019.1670095 SN - 2168-1171 PB - Taylor & Francis CY - London ER - TY - JOUR A1 - Capitain, Charlotte A1 - Ross-Jones, Jesse A1 - Möhring, Sophie A1 - Tippkötter, Nils T1 - Differential scanning calorimetry for quantification of polymer biodegradability in compost JF - International Biodeterioration & Biodegradation N2 - The objective of this study is the establishment of a differential scanning calorimetry (DSC) based method for online analysis of the biodegradation of polymers in complex environments. Structural changes during biodegradation, such as an increase in brittleness or crystallinity, can be detected by carefully observing characteristic changes in DSC profiles. Until now, DSC profiles have not been used to draw quantitative conclusions about biodegradation. A new method is presented for quantifying the biodegradation using DSC data, whereby the results were validated using two reference methods. The proposed method is applied to evaluate the biodegradation of three polymeric biomaterials: polyhydroxybutyrate (PHB), cellulose acetate (CA) and Organosolv lignin. The method is suitable for the precise quantification of the biodegradability of PHB. For CA and lignin, conclusions regarding their biodegradation can be drawn with lower resolutions. The proposed method is also able to quantify the biodegradation of blends or composite materials, which differentiates it from commonly used degradation detection methods. Y1 - 2020 U6 - https://doi.org/10.1016/j.ibiod.2020.104914 SN - 0964-8305 VL - 149 SP - In Press, Article number 104914 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Frotscher, Ralf A1 - Staat, Manfred T1 - Stresses produced by different textile mesh implants in a tissue equivalent JF - BioNanoMaterials N2 - Two single-incision mini-slings used for treating urinary incontinence in women are compared with respect to the stresses they produce in their surrounding tissue. In an earlier paper we experimentally observed that these implants produce considerably different stress distributions in a muscle tissue equivalent. Here we perform 2D finite element analyses to compare the shear stresses and normal stresses in the tissue equivalent for the two meshes and to investigate their failure behavior. The results clearly show that the Gynecare TVT fails for increasing loads in a zipper-like manner because it gradually debonds from the surrounding tissue. Contrary to that, the tissue at the ends of the DynaMesh-SIS direct may rupture but only at higher loads. The simulation results are in good agreement with the experimental observations thus the computational model helps to interpret the experimental results and provides a tool for qualitative evaluation of mesh implants. Y1 - 2014 U6 - https://doi.org/10.1515/bnm-2014-0003 SN - 2191-4672 (E-Journal); 2193-066X (E-Journal); 0011-8656 (Print); 1616-0177 (Print); 2193-0651 (Print) VL - 15 IS - 1-2 SP - 25 EP - 30 PB - De Gruyter CY - Berlin ER - TY - CHAP A1 - Kerpen, Nils B. A1 - Bung, Daniel Bernhard A1 - Valero, Daniel A1 - Schlurmann, Torsten T1 - Energy dissipation within the wave run-up at stepped revetments T2 - 8th Chinese-German Joint Symposium on Hydraulic and Ocean Engineering, Qingdao, China KW - energy disspation KW - wave run-up KW - friction Y1 - 2016 ER - TY - JOUR A1 - Vu, Duc Khoi A1 - Staat, Manfred A1 - Tran, Ich Thinh T1 - Analysis of pressure equipment by application of the primal-dual theory of shakedown JF - Communications in Numerical Methods in Engineering. 23 (2007), H. 3 Y1 - 2007 SN - 1069-8299 SP - 213 EP - 225 ER -