TY - CHAP A1 - Zug, Sebastian A1 - Niemueller, Tim A1 - Hochgeschwender, Nico A1 - Seidensticker, Kai A1 - Seidel, Martin A1 - Friedrich, Tim A1 - Neumann, Tobias A1 - Karras, Ulrich A1 - Kraetzschmar, Gerhard K. A1 - Ferrein, Alexander T1 - An Integration Challenge to Bridge the Gap Among Industry-Inspired RoboCup Leagues T2 - RoboCup 2016: Robot World Cup XX. RoboCup 2016. Y1 - 2017 SN - 978-3-319-68792-6 U6 - http://dx.doi.org/10.1007/978-3-319-68792-6_13 N1 - Lecture Notes in Computer Science, LNCS, Vol 9776 SP - 157 EP - 168 PB - Springer CY - Cham ER - TY - CHAP A1 - Wiesen, Patrick A1 - Engemann, Heiko A1 - Limpert, Nicolas A1 - Kallweit, Stephan T1 - Learning by Doing - Mobile Robotics in the FH Aachen ROS Summer School T2 - European Robotics Forum 2018, TRROS18 Workshop Y1 - 2018 SP - 47 EP - 58 ER - TY - CHAP A1 - Walenta, Robert A1 - Schellekens, Twan A1 - Ferrein, Alexander A1 - Schiffer, Stefan T1 - A decentralised system approach for controlling AGVs with ROS T2 - AFRICON, Proceedings Y1 - 2017 SN - 978-1-5386-2775-4 U6 - http://dx.doi.org/10.1109/AFRCON.2017.8095693 SN - 2153-0033 N1 - AFRICON <2017, 18-20 Sept., Cape Town, South Africa> SP - 1436 EP - 1441 PB - IEEE ER - TY - CHAP A1 - Viehmann, Tarik A1 - Limpert, Nicolas A1 - Hofmann, Till A1 - Henning, Mike A1 - Ferrein, Alexander A1 - Lakemeyer, Gerhard ED - Eguchi, Amy ED - Lau, Nuno ED - Paetzel-Prüsmann, Maike ED - Wanichanon, Thanapat T1 - Winning the RoboCup logistics league with visual servoing and centralized goal reasoning T2 - RoboCup 2022 N2 - The RoboCup Logistics League (RCLL) is a robotics competition in a production logistics scenario in the context of a Smart Factory. In the competition, a team of three robots needs to assemble products to fulfill various orders that are requested online during the game. This year, the Carologistics team was able to win the competition with a new approach to multi-agent coordination as well as significant changes to the robot’s perception unit and a pragmatic network setup using the cellular network instead of WiFi. In this paper, we describe the major components of our approach with a focus on the changes compared to the last physical competition in 2019. Y1 - 2023 SN - 978-3-031-28468-7 (Print) SN - 978-3-031-28469-4 (Online) U6 - http://dx.doi.org/https://doi.org/10.1007/978-3-031-28469-4_25 N1 - Robot World Cup, RoboCup 2022. 17. July 2023. Bangkok, Thailand. Part of the Lecture Notes in Computer Science book series (LNAI,volume 13561) SP - 300 EP - 312 PB - Springer CY - Cham ER - TY - CHAP A1 - Ulmer, Jessica A1 - Braun, Sebastian A1 - Cheng, Chi-Tsun A1 - Dowey, Steve A1 - Wollert, Jörg T1 - Adapting Augmented Reality Systems to the users’ needs using Gamification and error solving methods T2 - Procedia CIRP N2 - Animations of virtual items in AR support systems are typically predefined and lack interactions with dynamic physical environments. AR applications rarely consider users’ preferences and do not provide customized spontaneous support under unknown situations. This research focuses on developing adaptive, error-tolerant AR systems based on directed acyclic graphs and error resolving strategies. Using this approach, users will have more freedom of choice during AR supported work, which leads to more efficient workflows. Error correction methods based on CAD models and predefined process data create individual support possibilities. The framework is implemented in the Industry 4.0 model factory at FH Aachen. KW - Augmented Reality KW - Adaptive Systems KW - Gamification KW - Error Recovery Y1 - 2021 U6 - http://dx.doi.org/10.1016/j.procir.2021.11.024 SN - 2212-8271 N1 - Part of special issue: 54th CIRP CMS 2021 - Towards Digitalized Manufacturing 4.0 VL - 104 SP - 140 EP - 145 PB - Elsevier CY - Amsterdam ER - TY - CHAP A1 - Ulmer, Jessica A1 - Braun, Sebastian A1 - Cheng, Chi-Tsun A1 - Dowey, Steve A1 - Wollert, Jörg T1 - Usage of digital twins for gamification applications in manufacturing T2 - Procedia CIRP N2 - Gamification applications are on the rise in the manufacturing sector to customize working scenarios, offer user-specific feedback, and provide personalized learning offerings. Commonly, different sensors are integrated into work environments to track workers’ actions. Game elements are selected according to the work task and users’ preferences. However, implementing gamified workplaces remains challenging as different data sources must be established, evaluated, and connected. Developers often require information from several areas of the companies to offer meaningful gamification strategies for their employees. Moreover, work environments and the associated support systems are usually not flexible enough to adapt to personal needs. Digital twins are one primary possibility to create a uniform data approach that can provide semantic information to gamification applications. Frequently, several digital twins have to interact with each other to provide information about the workplace, the manufacturing process, and the knowledge of the employees. This research aims to create an overview of existing digital twin approaches for digital support systems and presents a concept to use digital twins for gamified support and training systems. The concept is based upon the Reference Architecture Industry 4.0 (RAMI 4.0) and includes information about the whole life cycle of the assets. It is applied to an existing gamified training system and evaluated in the Industry 4.0 model factory by an example of a handle mounting. KW - Gamification KW - Digital Twin KW - Support System Y1 - 2022 U6 - http://dx.doi.org/10.1016/j.procir.2022.05.044 SN - 2212-8271 N1 - 55th CIRP Conference on Manufacturing Systems VL - 107 SP - 675 EP - 680 PB - Elsevier CY - Amsterdam ER - TY - CHAP A1 - Stopforth, Riaan A1 - Ferrein, Alexander A1 - Steinbauer, Gerald T1 - Europe and South African collaboration on the Mechatronics and Robotics systems as part of the SA Robotics Center T2 - ICRA 2015 Developing Countries Forum N2 - Mechatronics consist of the integration of mechanical engineering, electronic integration and computer science/ engineering. These broad fields are essential for robotic systems, yet it makes it difficult for the researchers to specialize and be experts in all these fields. Collaboration between researchers allow for the integration of experience and specialization, to allow optimized systems. Collaboration between the European countries and South Africa is critical, as each country has different resources available, which the other countries might not have. Applications with the need for approval of any restrictions, can also be obtained easier in some countries compared to others, thus preventing the delays of research. Some problems that have been experienced are discussed, with the Robotics Center of South Africa as a possible solution. Y1 - 2015 ER - TY - CHAP A1 - Stopforth, Riaan A1 - Davrajh, Shaniel A1 - Ferrein, Alexander T1 - South African robotics entity for a collaboration initiative T2 - Pattern Recognition Association of South Africa and Robotics and Mechatronics International Conference (PRASA-RobMech), 2016 Y1 - 2017 SN - 978-1-5090-3335-5 U6 - http://dx.doi.org/10.1109/RoboMech.2016.7813144 N1 - PRASA-RobMech, Nov. 30 2016-Dec. 2 2016, Stellenbosch, South Africa SP - 1 EP - 6 PB - IEEE ER - TY - CHAP A1 - Stopforth, Riaan A1 - Davrajh, Shaniel A1 - Ferrein, Alexander T1 - Design considerations of the duo fugam dual rotor UAV T2 - 2017 Pattern Recognition Association of South Africa and Robotics and Mechatronics (PRASA-RobMech) Y1 - 2017 SN - 978-1-5386-2314-5 U6 - http://dx.doi.org/10.1109/RoboMech.2017.8261115 SP - 7 EP - 13 ER - TY - CHAP A1 - Steinbauer, Gerald A1 - Ferrein, Alexander T1 - CogRob 2018 : Cognitive Robotics Workshop. Proceedings of the 11th Cognitive Robotics Workshop 2018 co-located with 16th International Conference on Principles of Knowledge Representation and Reasoning (KR 2018). Tempe, AZ, USA, October 27th, 2018. T2 - CEUR workshop proceedings Y1 - 2019 SN - 1613-0073 N1 - edited by Gerald Steinbauer, Alexander Ferrein IS - Vol-2325 ER - TY - CHAP A1 - Schulte-Tigges, Joschua A1 - Matheis, Dominik A1 - Reke, Michael A1 - Walter, Thomas A1 - Kaszner, Daniel ED - Krömker, Heidi T1 - Demonstrating a V2X enabled system for transition of control and minimum risk manoeuvre when leaving the operational design domain T2 - HCII 2023: HCI in Mobility, Transport, and Automotive Systems N2 - Modern implementations of driver assistance systems are evolving from a pure driver assistance to a independently acting automation system. Still these systems are not covering the full vehicle usage range, also called operational design domain, which require the human driver as fall-back mechanism. Transition of control and potential minimum risk manoeuvres are currently research topics and will bridge the gap until full autonomous vehicles are available. The authors showed in a demonstration that the transition of control mechanisms can be further improved by usage of communication technology. Receiving the incident type and position information by usage of standardised vehicle to everything (V2X) messages can improve the driver safety and comfort level. The connected and automated vehicle’s software framework can take this information to plan areas where the driver should take back control by initiating a transition of control which can be followed by a minimum risk manoeuvre in case of an unresponsive driver. This transition of control has been implemented in a test vehicle and was presented to the public during the IEEE IV2022 (IEEE Intelligent Vehicle Symposium) in Aachen, Germany. KW - V2X KW - Transiton of Control KW - Minimum Risk Manoeuvre KW - Operational Design Domain KW - Connected Automated Vehicle Y1 - 2023 SN - 978-3-031-35677-3 (Print) SN - 978-3-031-35678-0 (Online) U6 - http://dx.doi.org/10.1007/978-3-031-35678-0_12 N1 - 5th International Conference, MobiTAS 2023, Held as Part of the 25th HCI International Conference, HCII 2023, Copenhagen, Denmark, July 23–28, 2023. SP - 200 EP - 210 PB - Springer CY - Cham ER - TY - CHAP A1 - Scholl, Ingrid A1 - Bartella, Alex A1 - Moluluo, Cem A1 - Ertural, Berat A1 - Laing, Frederic A1 - Suder, Sebastian T1 - MedicVR : Acceleration and Enhancement Techniques for Direct Volume Rendering in Virtual Reality T2 - Bildverarbeitung für die Medizin 2019 : Algorithmen – Systeme – Anwendungen Y1 - 2019 SN - 978-3-658-25326-4 U6 - http://dx.doi.org/10.1007/978-3-658-25326-4_32 SP - 152 EP - 157 PB - Springer Vieweg CY - Wiesbaden ER - TY - CHAP A1 - Schleupen, Josef A1 - Engemann, Heiko A1 - Bagheri, Mohsen A1 - Kallweit, Stephan A1 - Dahmann, Peter T1 - Developing a climbing maintenance robot for tower and rotor blade service of wind turbines T2 - Advances in Robot Design and Intelligent Control : Proceedings of the 25th Conference on Robotics in Alpe-Adria-Danube Region (RAAD16) Y1 - 2017 SN - 978-3-319-49058-8 U6 - http://dx.doi.org/10.1007/978-3-319-49058-8_34 N1 - Advances in Robot Design and Intelligent Control ; Vol. 540 SP - 310 EP - 319 PB - Springer CY - Cham ER - TY - CHAP A1 - Schiffer, Stefan A1 - Ferrein, Alexander T1 - A System Layout for Cognitive Service Robots T2 - Cognitive Robot Architectures. Proceedings of EUCognition 2016 Y1 - 2017 SN - 1613-0073 N1 - CEUR-WS Vol-1855 SP - 44 EP - 45 ER - TY - CHAP A1 - Reke, Michael A1 - Peter, Daniel A1 - Schulte-Tigges, Joschua A1 - Schiffer, Stefan A1 - Ferrein, Alexander A1 - Walter, Thomas A1 - Matheis, Dominik T1 - A Self-Driving Car Architecture in ROS2 T2 - 2020 International SAUPEC/RobMech/PRASA Conference, Cape Town, South Africa Y1 - 2020 SN - 978-1-7281-4162-6 U6 - http://dx.doi.org/10.1109/SAUPEC/RobMech/PRASA48453.2020.9041020 SP - 1 EP - 6 ER - TY - CHAP A1 - Nikolovski, Gjorgji A1 - Limpert, Nicolas A1 - Nessau, Hendrik A1 - Reke, Michael A1 - Ferrein, Alexander T1 - Model-predictive control with parallelised optimisation for the navigation of autonomous mining vehicles T2 - 2023 IEEE Intelligent Vehicles Symposium (IV) N2 - The work in modern open-pit and underground mines requires the transportation of large amounts of resources between fixed points. The navigation to these fixed points is a repetitive task that can be automated. The challenge in automating the navigation of vehicles commonly used in mines is the systemic properties of such vehicles. Many mining vehicles, such as the one we have used in the research for this paper, use steering systems with an articulated joint bending the vehicle’s drive axis to change its course and a hydraulic drive system to actuate axial drive components or the movements of tippers if available. To address the difficulties of controlling such a vehicle, we present a model-predictive approach for controlling the vehicle. While the control optimisation based on a parallel error minimisation of the predicted state has already been established in the past, we provide insight into the design and implementation of an MPC for an articulated mining vehicle and show the results of real-world experiments in an open-pit mine environment. KW - Mpc KW - Control KW - Path-following KW - Navigation KW - Automation Y1 - 2023 SN - 979-8-3503-4691-6 (Online) SN - 979-8-3503-4692-3 (Print) U6 - http://dx.doi.org/10.1109/IV55152.2023.10186806 N1 - IEEE Symposium on Intelligent Vehicle, 4.-7. June 2023, Anchorage, AK, USA. PB - IEEE ER - TY - CHAP A1 - Niemueller, Tim A1 - Reuter, Sebastian A1 - Ferrein, Alexander A1 - Jeschke, Sabina A1 - Lakemeyer, Gerhard ED - Almeida, Luis T1 - Evaluation of the RoboCup Logistics League and Derived Criteria for Future Competitions T2 - RoboCup 2015: Robot World Cup XIX Y1 - 2016 SN - 978-3-319-29339-4 U6 - http://dx.doi.org/10.1007/978-3-319-29339-4_3 N1 - Lecture Notes in Computer Science ; 9513 SP - 31 EP - 43 PB - Springer International Publishing CY - Cham ER - TY - CHAP A1 - Niemueller, Tim A1 - Reuter, Sebastian A1 - Ferrein, Alexander ED - Almeida, Luis T1 - Fawkes for the RoboCup Logistics League T2 - RoboCup 2015: Robot World Cup XIX Y1 - 2016 SN - 978-3-319-29339-4 U6 - http://dx.doi.org/10.1007/978-3-319-29339-4_31 N1 - Lecture Notes in Computer Science ; 9513 SP - 365 EP - 373 PB - Springer International Publishing CY - Cham ER - TY - CHAP A1 - Niemueller, Tim A1 - Reuter, Sebastian A1 - Ewert, Daniel A1 - Ferrein, Alexander A1 - Jeschke, Sabina A1 - Lakemeyer, Gerhard ED - Almeida, Luis T1 - The Carologistics Approach to Cope with the Increased Complexity and New Challenges of the RoboCup Logistics League 2015 T2 - RoboCup 2015: Robot World Cup XIX Y1 - 2016 SN - 978-3-319-29339-4 U6 - http://dx.doi.org/10.1007/978-3-319-29339-4_4 N1 - Lecture Notes in Computer Science ; 9513 SP - 47 EP - 59 PB - Springer International Publishing CY - Cham ER - TY - CHAP A1 - Niemueller, Tim A1 - Neumann, Tobias A1 - Henke, Christoph A1 - Schönitz, Sebastian A1 - Reuter, Sebastian A1 - Ferrein, Alexander A1 - Jeschke, Sabina A1 - Lakemeyer, Gerhard T1 - Improvements for a robust production in the RoboCup logistics league 2016 T2 - RoboCup 2016: Robot World Cup XX. RoboCup 2016. Y1 - 2017 SN - 978-3-319-68792-6 U6 - http://dx.doi.org/10.1007/978-3-319-68792-6_49 SP - 589 EP - 600 PB - Springer CY - Cham ER -