TY - JOUR A1 - Scheer, Nico A1 - Kapelyukh, Yury A1 - McEwan, Jillian A1 - Beuger, Vincent A1 - Stanley, Lesley A. A1 - Rode, Anja A1 - Wolf, C. Roland T1 - Modeling Human Cytochrome P450 2D6 Metabolism and Drug-drug Interaction by a Novel Panel of Knockout and Humanized Mouse Lines JF - Molecular Pharmacology N2 - The highly polymorphic human cytochrome P450 2D6 enzyme is involved in the metabolism of up to 25% of all marketed drugs and accounts for significant individual differences in response to CYP2D6 substrates. Because of the differences in the multiplicity and substrate specificity of CYP2D family members among species, it is difficult to predict pathways of human CYP2D6-dependent drug metabolism on the basis of animal studies. To create animal models that reflect the human situation more closely and that allow an in vivo assessment of the consequences of differential CYP2D6 drug metabolism, we have developed a novel straightforward approach to delete the entire murine Cyp2d gene cluster and replace it with allelic variants of human CYP2D6. By using this approach, we have generated mouse lines expressing the two frequent human protein isoforms CYP2D6.1 and CYP2D6.2 and an as yet undescribed variant of this enzyme, as well as a Cyp2d cluster knockout mouse. We demonstrate that the various transgenic mouse lines cover a wide spectrum of different human CYP2D6 metabolizer phenotypes. The novel humanization strategy described here provides a robust approach for the expression of different CYP2D6 allelic variants in transgenic mice and thus can help to evaluate potential CYP2D6-dependent interindividual differences in drug response in the context of personalized medicine. Y1 - 2012 U6 - https://doi.org/10.1124/mol.111.075192 SN - 1521-0111 VL - 81 IS - 1 SP - 63 EP - 72 PB - ASPET CY - Bethesda, Md. ER - TY - JOUR A1 - Werner, Frederik A1 - Groebel, Simone A1 - Krumbe, Christoph A1 - Wagner, Torsten A1 - Selmer, Thorsten A1 - Yoshinobu, Tatsuo A1 - Baumann, Marcus A1 - Schöning, Michael Josef T1 - Nutrient concentration-sensitive microorganism-based biosensor JF - Physica Status Solidi (a) Y1 - 2012 U6 - https://doi.org/10.1002/pssa.201100801 SN - 1862-6319 VL - 209 IS - 5 SP - 900 EP - 904 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Aggarwal, P. A1 - Dhiman, S. A1 - Kumar, G. A1 - Scherer, Ulrich W. A1 - Singla, M. L. A1 - Srivastava, A. T1 - Optical study of poly(ethyleneterephthalate) modified by different ionizing radiation dose JF - Indian Journal of Pure and Applied Physics N2 - Thin films of poly(ethyleneterephthalate) [PET]were exposed to radiation dose ranging from 10 to 30 kGy by using gamma rays in the range 12.8-177.8 MGy using swift light ions of hydrogen. There was no effect of the radiation dose on the optical behaviour of PET as a result of exposure to radiation dose up to 30 kGy brought about by gamma rays but a significant decrease in the optical band gap values was observed when PET was exposed to swift light ions of hydrogen. The data obtained are discussed in terms of optical studies carried out on PET using swift heavy ions. Y1 - 2012 SN - 0019-5596 VL - 50 IS - 2 SP - 129 EP - 132 ER - TY - JOUR A1 - Henken, F. E. A1 - Oosterhuis, K. A1 - Öhlschläger, Peter A1 - Bosch, L. A1 - Hooijberg, E. A1 - Haanen, J. B. A. G. A1 - Steenbergen, R. D. M. T1 - Preclinical safety evaluation of DNA vaccines encoding modified HPV16 E6 and E7 JF - Vaccine N2 - Persistent infection with high-risk human papillomaviruses (hrHPV) can result in the formation of anogenital cancers. As hrHPV proteins E6 and E7 are required for cancer initiation and maintenance, they are ideal targets for immunotherapeutic interventions. Previously, we have described the development of DNA vaccines for the induction of HPV16 E6 and E7 specific T cell immunity. These vaccines consist of ‘gene-shuffled’ (SH) versions of HPV16 E6 and E7 that were fused to Tetanus Toxin Fragment C domain 1 (TTFC) and were named TTFC-E6SH and TTFC-E7SH. Gene-shuffling was performed to avoid the risk of inducing malignant transformation at the vaccination site. Here, we describe the preclinical safety evaluation of these candidate vaccines by analysis of their transforming capacity in vitro using established murine fibroblasts (NIH 3T3 cells) and primary human foreskin keratinocytes (HFKs). We demonstrate that neither ectopic expression of TTFC-E6SH and TTFC-E7SH alone or in combination enabled NIH 3T3 cells to form colonies in soft agar. In contrast, expression of HPV16 E6WT and E7WT alone or in combination resulted in effective transformation. Similarly, retroviral transduction of HFKs from three independent donors with both TTFC-E6SH and TTFC-E7SH alone or in combination did not show any signs of immortalization. In contrast, the combined expression of E6WT and E7WT induced immortalization in HFKs from all donors. Based on these results we consider it justified to proceed to clinical evaluation of DNA vaccines encoding TTFC-E6SH and TTFC-E7SH in patients with HPV16 associated (pre)malignancies. Y1 - 2012 U6 - https://doi.org/10.1016/j.vaccine.2012.04.013 SN - 0264-410X VL - 30 IS - 28 SP - 4259 EP - 4266 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Immel, Timo A1 - Grützke, Martin A1 - Späte, Anne-Katrin A1 - Groth, Ulrich A1 - Öhlschläger, Peter A1 - Huhn, Thomas T1 - Synthesis and X-ray structure analysis of a heptacoordinate titanium(IV)-bis-chelate with enhanced in vivo antitumor efficacy JF - Chemical Communications N2 - Chelate stabilization of a titanium(IV)–salan alkoxide by ligand exchange with 2,6-pyridinedicarboxylic acid (dipic) resulted in heptacoordinate complex 3 which is not redox-active, stable on silica gel and has increased aqueous stability. 3 is highly toxic in HeLa S3 and Hep G2 and has enhanced antitumor efficacy in a mouse cervical-cancer model. Y1 - 2012 U6 - https://doi.org/10.1039/C2CC31624B SN - 1364-548X VL - 48 IS - 46 SP - 5790 EP - 5792 PB - Royal Society of Chemistry CY - Cambridge ER - TY - JOUR A1 - Paulßen, Elisabeth A1 - Ngyugen, Hung Huy A1 - Kahlcke, Nils A1 - Deflon, Victor M. A1 - Abram, Ulrich T1 - Tricarbonyltechnetium(I) and -rhenium(I) complexes with N′-thiocarbamoylpicolylbenzamidines JF - Polyhedron N2 - N,N-Dialkylamino(thiocarbonyl)-N′-picolylbenzamidines react with (NEt4)2[M(CO)3X3] (M = Re, X = Br; M = Tc, X = Cl) under formation of neutral [M(CO)3L] complexes in high yields. The monoanionic NNS ligands bind in a facial coordination mode and can readily be modified at the (CS)NR1R2 moiety. The complexes [99Tc(CO)3(LPyMor)] and [Re(CO)3(L)] (L = LPyMor, LPyEt) were characterized by X-ray diffraction. Reactions of [99mTc(CO)3(H2O)3]+ with the N′-thiocarbamoylpicolylbenzamidines give the corresponding 99mTc complexes. The ester group in HLPyCOOEt allows linkage between biomolecules and the metal core. Y1 - 2012 U6 - https://doi.org/10.1016/j.poly.2012.04.008 SN - 0277-5387 VL - 40 IS - 1 SP - 153 EP - 158 PB - Elsevier CY - Amsterdam ER -