TY - CHAP A1 - Sattler, Johannes Christoph A1 - Chico Caminos, Ricardo Alexander A1 - Atti, Vikrama Nagababu A1 - Ürlings, Nicolas A1 - Dutta, Siddharth A1 - Ruiz, Victor A1 - Kalogirou, Soteris A1 - Ktistis, Panayiotis A1 - Agathokleous, Rafaela A1 - Alexopoulos, Spiros A1 - Teixeira Boura, Cristiano José A1 - Herrmann, Ulf T1 - Dynamic simulation tool for a performance evaluation and sensitivity study of a parabolic trough collector system with concrete thermal energy storage T2 - AIP Conference Proceedings 2303 Y1 - 2020 U6 - https://doi.org/10.1063/5.0029277 SN - 0094-243X N1 - SOLARPACES 2019: International Conference on Concentrating Solar Power and Chemical Energy Systems, 1–4 October 2019, Daegu, South Korea SP - 160004 PB - American Institute of Physics CY - Melville, NY ER - TY - CHAP A1 - Oetringer, Kerstin A1 - Dümmler, Andreas A1 - Göttsche, Joachim T1 - Neues Modell zur 1D-Simulation der indirekten Verdunstungskühlung T2 - DKV‐Tagung 2020, AA II.1 N2 - Im Projekt Coolplan‐ AIR geht es um die Fortentwicklung und Feld‐ Validierung eines Berechnungs‐ und Auslegungstools zur energieeffizienten Kühlung von Gebäuden mit luftgestützten Systemen. Neben dem Aufbau und der Weiterentwicklung von Simulationsmodellen erfolgen Vermessungen der Gesamtsysteme anhand von Praxisanlagen im Feld. Eine der betrachteten Anlagen arbeitet mit indirekter Verdunstung. Diese Veröffentlichung zeigt den Entwicklungsprozess und den Aufbau des Simulationsmodells zur Verdunstungskühlung in der Simulationsumgebung Matlab‐ Simulink mit der CARNOT‐ Toolbox. Das besondere Augenmerk liegt dabei auf dem physikalischen Modell des Wärmeübertragers, in dem die Verdunstung implementiert ist. Dem neuen Modellansatz liegt die Annahme einer aus der Enthalpie‐ Betrachtung hergeleiteten effektiven Wärmekapazität zugrunde. Des Weiteren wird der Befeuchtungsgrad als konstant angesehen und eine standardisierte Zunahme der Wärmeübertragung des feuchten gegenüber dem trockenen Wärmeübertrager angenommen. Die Validierung des Modells erfolgte anhand von Literaturdaten. Für den trockenen Wärmetauscher ist der maximale absolute Fehler der berechneten Austrittstemperatur (Zuluft) kleiner als ±0.1 K und für den nassen Wärmetauscher (Kühlfall) unter der Annahme eines konstanten Verdunstungsgrades kleiner als ±0.4 K. Y1 - 2020 N1 - Deutsche Kälte- und Klimatagung, 19-20 November 2020, online SP - 250 EP - 262 ER - TY - CHAP A1 - Dümmler, Andreas A1 - Oetringer, Kerstin A1 - Göttsche, Joachim T1 - Auslegungstool zur energieeffizienten Kühlung von Gebäuden T2 - DKV-Tagung 2020, AA IV N2 - Thematisch widmet sich das Projekt Coolplan- AIR der Fortentwicklung und Feldvalidierung eines Berechnungs- und Auslegungstools zur energieeffizienten Kühlung von Gebäuden mit luftgestützten Systemen. Neben dem Aufbau und der Weiterentwicklung von Simulationsmodellen erfolgen Vermessungen der Gesamtsysteme anhand von Praxisanlagen im Feld. Der Schwerpunkt des Projekts liegt auf der Vermessung, Simulation und Integration rein luftgestützter Kühltechnologien. Im Bereich der Kälteerzeugung wurden Luft‐ Luft‐ Wärmepumpen, Anlagen zur adiabaten Kühlung bzw. offene Kühltürme und VRF‐ Multisplit‐ Systeme (Variable Refrigerant Flow) im Feld bzw. auf dem Teststand der HSD vermessen. Die Komponentenmodelle werden in die Matlab/Simulink‐ Toolbox CARNOT integriert und anschließend auf Basis der zuvor erhaltenen Messdaten validiert. Einerseits erlauben die Messungen das Betriebsverhalten von Anlagenkomponenten zu analysieren. Andererseits soll mit der Vermessung im Feld geprüft werden, inwieweit die Simulationsmodelle, welche im Vorgängerprojekt aus Prüfstandmessungen entwickelt wurden, auch für größere Geräteleistungen Gültigkeit besitzen. Die entwickelten und implementierten Systeme, bestehend aus verschiedensten Anlagenmodellen und Regelungskomponenten, werden geprüft und dahingehend qualifiziert, dass sie in Standard- Auslegungstools zuverlässig verwendet werden können. Zusätzlich wird ein energetisches Monitoring eines Hörsaalgebäudes am Campus Jülich durchgeführt, das u. a. zur Validierung der Kühllastberechnungen in gängigen Simulationsmodelle genutzt werden kann. Y1 - 2020 N1 - Deutsche Kälte- und Klimatagung, 19-20 November 2020, online SP - 1109 ER - TY - JOUR A1 - Blanke, Tobias A1 - Reger, Vitali A1 - Döring, Bernd A1 - Göttsche, Joachim A1 - Kuhnhenne, Markus T1 - Koaxiale Stahlenergiepfähle JF - Stahlbau N2 - Ein entscheidender Teil der Energiewende ist die Wärmewende im Gebäudesektor. Ein Schlüsselelement sind hier Wärmepumpen. Diese benötigen eine Wärmequelle, der sie Energie entziehen können, um sie auf ein höheres Temperaturniveau zu transformieren. Diese Wärmequelle kann bspw. das Erdreich sein, dessen Wärme durch Erdsonden erschlossen werden kann. In diesem Beitrag werden in Stahlpfähle integrierte Koaxialsonden mit dem Stand der Technik von Erdsonden gleichen Durchmessers bezüglich ihrer thermischen Leistungsmerkmale verglichen. Die Stahlenergiepfähle bieten neben der Wärmegewinnung weitere Vorteile, da sie auch eine statische Funktion übernehmen und rückstandsfrei zurückgebaut werden können. Es werden analytische und numerische Berechnungen vorgestellt, um die thermischen Potenziale beider Systeme zu vergleichen. Außerdem wird ein Testaufbau gezeigt, bei dem Stahlenergiepfähle in zwei verschiedenen Längen mit vorhandenen gängigen Erdsonden verglichen werden können. Die Berechnungen zeigen einen deutlichen thermischen Mehrertrag zwischen 26 % und 148 % der Stahlenergiepfähle gegenüber dem Stand der Technik abhängig vom Erdreich. Die Messergebnisse zeigen einen thermischen Mehrertrag von über 100 %. Es lässt sich also signifikante Erdsondenlänge einsparen. Dabei ist zu beachten, dass sich damit der thermisch genutzte Bereich des Erdreichs reduziert, wodurch die thermische Regeneration und/oder das Langzeitverhalten des Erdreichs an Bedeutung gewinnt. Y1 - 2021 VL - 90. 2021 IS - 6 SP - 417 EP - 424 PB - Wiley CY - Weinheim ER - TY - RPRT A1 - Ghinaiya, Jagdishkumar A1 - Lehmann, Thomas A1 - Göttsche, Joachim T1 - LOCAL+ – ein kreislauffähiger Holzmodulbau mit nachhaltigem Energie- und Wohnraumkonzept T2 - Bauphysik N2 - Mit dem Beitrag des Teams der FH Aachen zum SDE 21/22 wird im Projekt LOCAL+ ein kreislauffähiger Holzmodulbau mit einem innovativen Wohnraumkonzept geplant und umgesetzt. Ziel dieses Konzeptes ist die Verringerung des stetig steigenden Wohnflächenbedarfs durch ein Raum-in-Raum Konzept. Gebäudetechnisch wird in dem Projekt nicht nur das Einzelgebäude betrachtet, sondern unter Berücksichtigung des Gebäudebestandes wird für das Quartier ein innovatives und nachhaltiges Energiekonzept entwickelt. Ein zentrales Wasserstoffsystem ist für ein Quartier geplant, um den Stromverbrauch aus dem Netz im Winter zu reduzieren. Zentraler Bestandteil des TGA-Konzepts ist ein unterirdischer Eisspeicher, eine PVT und eine Wärmepumpe mit intelligenter Regelstrategie. Ein Teil des neuen Gebäudes (Design Challenge DC) wird in Wuppertal als Hausdemonstrationseinheit (HDU) präsentiert. Eine hygrothermische Simulation der HDU wurde mit der WUFI-Software durchgeführt. Da im Innenraum Lehmmodule und -platten als Feuchtigkeitspuffer verwendet werden, spielen die Themen Feuchtigkeit, Holzfäule und Schimmelwachstum eine wichtige Rolle. KW - Energiekonzept KW - Gesamtwassergehalt KW - Feuchtigkeit KW - Verdunstungskälte KW - energy concept Y1 - 2022 U6 - https://doi.org/10.1002/bapi.202200010 SN - 0171-5445 (Print) SN - 1437-0980 (Online) VL - 44 IS - 3 SP - 136 EP - 142 PB - Ernst & Sohn CY - Hoboken ER -