TY - CHAP A1 - Hirsch, G. A1 - Wahle, Michael T1 - Auslegungskriterien für Dynamische Schwingungsdämpfer für schwach gedämpfte elastische Strukturen unter Berücksichtigung einer der Masseverteilung nicht proportionalen Zusatzdämpfung T2 - Hans Ebner : Gedächtnis-Kolloquium am 27./28. Oktober 1977 in Aachen. - (Mitteilung aus dem Institut für Leichtbau, Aachen ; 1) Y1 - 1978 SP - 374 EP - 400 CY - Aachen ER - TY - CHAP A1 - Mertens, Josef A1 - Becker, K. ED - Ballmann, Josef T1 - Numerical solution of flow equations : an aircraft designer's view T2 - Nonlinear hyperbolic equations - theory, computation methods, and applications : proceedings of the 2nd International Conference on Nonlinear Hyperbolic Problems, Aachen, FRG, March 14 to 18, 1988. - (Notes on Numerical Fluid Mechanics ; 24) N2 - Today the most accurate and cost effective industrial codes used in aircraft design are based on the full potential equation coupled with boundary layer equations. However, these are not capable to solve complicated three-dimensional problems of vortical flows and shocks. On the other hand Euler and Navier-Stokes codes are too expensive and not accurate enough for design purposes, especially in regard of drag and interference prediction. The reasons for these deficiencies are investigated and a way to overcome them by future developments is demonstrated. Y1 - 1989 SN - 3-528-08098-1 U6 - http://dx.doi.org/10.1007/978-3-322-87869-4_41 N1 - International Conference on Nonlinear Hyperbolic Problems <3, 1988, Aachen> SP - 403 EP - 412 PB - Vieweg CY - Braunschweig ER - TY - CHAP A1 - Mertens, Josef ED - Sobieczky, H. T1 - Aerodynamic multi point design challenge T2 - New design concepts for high speed air transport.- (Courses and lectures / International Centre for Mechanical Sciences ; 366) N2 - In the chapter “Son of Concorde, a Technology Challenge” one of the new challenges for a Supersonic Commercial Transport (SCT) is multi-point design for the four main design points: - supersonic cruise - transonic cruise - take-off and landing - transonic acceleration. KW - Drag Reduction KW - Pitching Moment KW - Leading Edge Vortex KW - Wave Drag KW - Variable Geometry Y1 - 1997 SN - 3-2118-2815-X U6 - http://dx.doi.org/10.1007/978-3-7091-2658-5_4 SP - 53 EP - 67 PB - Springer CY - Wien [u.a.] ER - TY - CHAP A1 - Mertens, Josef ED - Sobieczky, H. T1 - Required aerodynamic technologies T2 - New design concepts for high speed air transport. - (Courses and lectures / International Centre for Mechanical Sciences ; 366) N2 - In the preceeding chapters on “Son of Concorde, a Technology Challenge” and “Aerodynamic Multipoint Design Challenge” it was explained, that a well balanced contribution of new technologies in all major disciplines is required for realisation of a new Supersonic Commercial Transport (SCT). One of these technologies - usually one of the most important for aircraft-is aerodynamics. Here, the required “pure” aerodynamic technologies are specified in more detail, according to our present knowledge. Increasing insight into the problems may change the balance of importance of the individual technologies and may require some more contributions. We must never confine our knowledge to the knowledge base of an expert at a given time, but must stay open for new insights. KW - Mach Number KW - Wind Tunnel KW - Supersonic Flow KW - Pitching Moment KW - Wave Drag Y1 - 1997 SN - 3-2118-2815-X U6 - http://dx.doi.org/10.1007/978-3-7091-2658-5_5 SP - 69 EP - 96 PB - Springer CY - Wien [u.a.] ER - TY - CHAP A1 - Mertens, Josef ED - Sobieczky, H. T1 - Certification of supersonic civil transports T2 - New design concepts for high speed air transport. - (Courses and lectures / International Centre for Mechanical Sciences ; 366) N2 - Since certification of Concorde new certification standards were introduced including many new regulations to improve flight safety. Most of these standards are to prevent severe accidents in the future which happened in the past (here: after Concorde’s certification). A new SCT has to fulfill these standards, although Concorde had none of these accidents. But accidents - although they sometimes occurred only for a specific aircraft type - have to be avoided for any (new) aircraft. Because of existing aircraft without typical accident types having demonstrated their reliability, they are allowed to go on based on their old certification; although sometimes new rules prevent accident types which are not connected to specific aircraft types - like e.g. evacuation rules. Anyway, Concorde is allowed to fly based on its old certification, and hopefully in the future will fly as safely as in the past. But a new SCT has to fulfill updated rules like any other aircraft, and it has to be “just another aircraft” [75]. KW - Noise Exposure KW - Evacuation Rule KW - Severe Accident KW - Certification Rule KW - Thermal Fatigue Testing Y1 - 1997 SN - 3-2118-2815-X U6 - http://dx.doi.org/10.1007/978-3-7091-2658-5_6 SP - 97 EP - 103 PB - Springer CY - Wien [u.a.] ER - TY - CHAP A1 - Mertens, Josef ED - Sobieczky, H. T1 - Supersonic laminar flow T2 - New design concepts for high speed air transport. - (Courses and lectures / International Centre for Mechanical Sciences ; 366) N2 - Supersonic transports are very drag sensitive. Technology to reduce drag by application of laminar flow, therefore, will be important; it is a prerequisite to achieve very long range capability. In earlier studies it was assumed that SCTs would only become possible by application of laminar flow [376]. But today, we request an SCT to be viable without application of laminar flow in order to maintain its competitiveness when laminar flow becomes available for subsonic and supersonic transports. By reducing fuel burned, laminar flow drag reduction reduces size and weight of the aircraft, or increases range capability -whereas otherwise size and weight would grow towards infinity. Transition mechanisms from laminar to turbulent state of the boundary layer flow (ALT, CFI, TSI) function as for transonic transports, but at more severe conditions: higher sweep angles, cooled surfaces; higher mode instabilities (HMI) must at least be taken into account, although they may not become important below Mach 3. Hitherto there is a worldwide lack of ground test facilities to investigate TSI at the expected cruise Mach numbers between 1.6 and 2.4; in Stuttgart, Germany one such facility -a Ludwieg tube- is still in the validation phase. A quiet Ludwieg tunnel could be a favourable choice for Europe. But it will require a new approach in designing aircraft which includes improved theoretical predictions, usage of classical wind tunnels for turbulent flow and flight tests for validation. KW - Wind Tunnel KW - Flight Test KW - Supersonic Wind Tunnel KW - Parabolized Stability Equation Y1 - 1997 SN - 3-2118-2815-X U6 - http://dx.doi.org/10.1007/978-3-7091-2658-5_18 SP - 275 EP - 290 PB - Springer CY - Wien [u.a.] ER - TY - CHAP A1 - Mertens, Josef ED - Sobieczky, H. T1 - Son of Concorde, a technology challenge T2 - New design concepts for high speed air transport. - (Courses and lectures / International Centre for Mechanical Sciences ; 366) N2 - Concorde (Figure 9) is the only supersonic airliner which has been introduced into regular passenger service. It is still in service at British Airways and Air France without any flight accidents, and probably will stay in service for at least for ten more years. KW - Technology Challenge KW - Multidisciplinary Design Optimization KW - Specific Fuel Consumption KW - Engine Efficiency KW - Sonic Boom Y1 - 1997 SN - 3-2118-2815-X U6 - http://dx.doi.org/10.1007/978-3-7091-2658-5_3 SP - 31 EP - 51 PB - Springer CY - Wien [u.a.] ER - TY - CHAP A1 - Mertens, Josef T1 - Reduction of aerodynamic drag (RaWid)-Status after the first year of the program T2 - New results in numerical and experimental fluid mechanics. - (Notes on numerical fluid mechanics ; 60) N2 - The technology programme “Reduction of aerodynamic drag (RaWid)” for high speed aerodynamics at Daimler-Benz Aerospace Airbus is sponsered by the German ministry for education, research and technology since July 1, 1995. Connected to this industrial programme are the cooperation programmes “MEGAFLOW” under leadership of the DLR and “Transition” by the DFG, and several contributions by DLR and universities. The programme is oriented towards technologies required for a MEGALINER which gains momentum by the ambitious plans for a new large Airbus A3XX. In the first year new technological steps were undertaken in theory, design and experiment. Some critical steps were verified by wing designs checked in wind tunnel tests. KW - Wind Tunnel KW - Aerodynamic Drag KW - Flight Test KW - Friction Drag Y1 - 1997 SN - 3-528-06960-0 U6 - http://dx.doi.org/10.1007/978-3-322-86573-1_2 SP - 7 EP - 14 PB - Vieweg CY - Braunschweig [u.a.] ER - TY - CHAP A1 - Wahle, Michael ED - Reimerdes, Hans-G. T1 - Strukturmechanische Auslegung von Elastomer-Bauteilen in der Schwingungstechnik T2 - Kolloquium anläßlich des 70. Geburtstags von H. Öry : [29.09.1997 - 30.09.1997, Kármán-Auditorium, Hörsaal FO5, RWTH Aachen] Y1 - 1997 SP - 175 EP - 188 PB - Inst. für Leichtbau CY - Aachen ER - TY - CHAP A1 - Brandt, D. A1 - Güsken, J. A1 - Büchen, W. A1 - [u.a.], A1 - Wahle, Michael T1 - Konstruieren mit Aluminium [Kapitel 4] T2 - Aluminium-Taschenbuch / Hrsg.: Aluminium-Zentrale Düsseldorf. - Bd. 3: Weiterverarbeitung und Anwendung Y1 - 1997 SN - 3-87017-243-6 SP - 359 EP - 544 PB - Aluminium-Verlag CY - Düsseldorf ET - 15. Auflage ER - TY - CHAP A1 - Ballmann, Josef A1 - Boucke, Alexander A1 - Braun, Carsten T1 - Aeroelastic sensitivity in the transonic regime T2 - Symposium Transsonicum IV : proceedings of the IUTAM symposium held in Göttingen, Germany, 2 - 6 September 2002 / ed. by Helmut Sobieczky. Fluid mechanics and its applications. Vol. 73 Y1 - 2003 SN - 978-94-010-3998-7 SP - 225 EP - 236 PB - Kluwer Academic CY - Dordrecht ER - TY - CHAP A1 - Braun, Carsten A1 - Boucke, Alexander A1 - Hanke, M. A1 - Karavas, Alexandros A1 - Ballmann, Josef T1 - Prediction of the model deformation of a high speed transport aircraft type wing by direct aeroelastic simulation T2 - High performance computing in science and engineering '03. Transactions of the High Performance Computing Center Stuttgart (HLRS) 2003 / Eds.: Egon Krause ... Y1 - 2003 SN - 978-3-540-40850-5 SP - 331 EP - 342 PB - Springer CY - Berlin ER - TY - CHAP A1 - Britten, G. A1 - Braun, Carsten A1 - Hesse, M. A1 - Ballmann, Josef T1 - Computational aeroelasticity with reduced structural models T2 - Flow modulation and fluid-structure interaction at airplane wings : research results of the Collaborative Research Center SFB 401 at RWTH Aachen, University of Technology, Aachen, Germany / Josef Ballmann (Ed.) Notes on numerical fluid mechanics and multidisciplinary design. Vol. 84 Y1 - 2003 SN - 3-540-40209-8 SP - 275 EP - 299 PB - Springer CY - Berlin ER - TY - CHAP A1 - Gitter, R. A1 - Hornhardt, Ch. A1 - Koewius, A. A1 - [u.a.], A1 - Wahle, Michael T1 - Konstruieren mit Aluminium [Kapitel 4] T2 - Aluminium-Taschenbuch / Hrsg.: Aluminium-Zentrale Düsseldorf. - Bd. 3: Weiterverarbeitung und Anwendung Y1 - 2003 SN - 3-87017-275-4 SP - 355 EP - 599 PB - Aluminium-Verlag CY - Düsseldorf ET - 16. Auflage ER - TY - CHAP A1 - Braun, Carsten A1 - Boucke, Alexander A1 - Ballmann, Josef T1 - Numerical study of the influence of dynamic pressure and deflected ailerons on the deformation of a high speed wing model T2 - High performance computing in science and engineering '04. Transactions of the High Performance Computing Center Stuttgart (HLRS) 2004 / Eds.: Egon Krause ... Y1 - 2005 SN - 3-540-22943-4 SP - 225 EP - 236 PB - Springer CY - Berlin ER - TY - CHAP A1 - Reimer, Lars A1 - Braun, Carsten A1 - Ballmann, Josef T1 - Computational study of the aeroelastic equilibrium configuration of a swept wind tunnel wing model in subsonic flow T2 - High performance computing in science and engineering '06. Transactions of the High Performance Computing Center Stuttgart (HLRS) 2006 / Wolfgang E. Nagel ... Eds. N2 - In the Collaborative Research Center SFB 401 at RWTH Aachen University, the numerical aeroelastic method SOFIA for direct numerical aeroelastic simulation is being progressively developed. Numerical results obtained by applying SOFIA were compared with measured data of static and dynamic aeroelastic wind tunnel tests for an elastic swept wing in subsonic flow. Y1 - 2007 SN - 978-3-540-36165-7 SP - 421 EP - 434 PB - Springer CY - Berlin [u.a.] ER - TY - CHAP A1 - Reimer, Lars A1 - Wellmer, Georg A1 - Braun, Carsten A1 - Ballmann, Josef T1 - Computational methods for aero-structural analysis and optimisation of aircrafts based on reduced-order structural models T2 - MEGADESIGN and MegaOpt - German initiatives for aerodynamic simulation and optimization in aircraft design. Results of the closing symposium of the MEGADESIGN and MegaOpt projects, Braunschweig, Germany, 23 - 24 May, 2007 / Norbert Kroll ... (Eds.) Notes on numerical fluid mechanics and multidisciplinary design. Vol. 107 N2 - In this part of the MEGADESIGN project, aeroelastic effects are introduced into the aerodynamic analysis of aircrafts by coupling DLR’s flow solvers TAU and FLOWer to a Timoshenko-beam solver. The emerging aeroelastic solvers and a method for the automatic identification of Timoshenko-beam models for wing-box structures were integrated into a simulation environment enabling the combined optimisation of aerodynamic wing shape and structure. Y1 - 2009 SN - 978-3-642-04092-4 SP - 135 EP - 150 PB - Springer CY - Berlin ER - TY - CHAP A1 - Reimer, Lars A1 - Braun, Carsten A1 - Wellmer, Georg A1 - Behr, Marek A1 - Ballmann, Josef T1 - Development of a modular method for computational aero-structural analysis of aircraft T2 - Summary of flow modulation and fluid-structure interaction findings. Results of the Collaborative Research Center SFB 401 at the RWTH Aachen University, Aachen, Germany, 1997-2008 / ed.: Wolfgang Schröder. Notes on numerical fluid mechanics and multidisciplinary design. Vol. 109 Y1 - 2010 SN - 978-3-642-04087-0 SP - 205 EP - 238 PB - Springer CY - Berlin ER - TY - CHAP A1 - Dachwald, Bernd T1 - Solar sail dynamics and control T2 - Encyclopedia of Aerospace Engineering N2 - Solar sails are large and lightweight reflective structures that are propelled by solar radiation pressure. This chapter covers their orbital and attitude dynamics and control. First, the advantages and limitations of solar sails are discussed and their history and development status is outlined. Because the dynamics of solar sails is governed by the (thermo-)optical properties of the sail film, the basic solar radiation pressure force models have to be described and compared before parameters to measure solar sail performance can be defined. The next part covers the orbital dynamics of solar sails for heliocentric motion, planetocentric motion, and motion at Lagrangian equilibrium points. Afterwards, some advanced solar radiation pressure force models are described, which allow to quantify the thrust force on solar sails of arbitrary shape, the effects of temperature, of light incidence angle, of surface roughness, and the effects of optical degradation of the sail film in the space environment. The orbital motion of a solar sail is strongly coupled to its rotational motion, so that the attitude control of these soft and flexible structures is very challenging, especially for planetocentric orbits that require fast attitude maneuvers. Finally, some potential attitude control methods are sketched and selection criteria are given. KW - solar sail KW - sailcraft KW - orbital dynamics KW - orbit control KW - attitude dynamics Y1 - 2010 U6 - http://dx.doi.org/10.1002/9780470686652.eae292 PB - Wiley CY - Hoboken ER - TY - CHAP A1 - Funke, Harald A1 - Börner, Sebastian A1 - Hendrick, P. A1 - Recker, E. T1 - Modification and testing of an engine and fuel control system for a hydrogen fuelled gas turbine T2 - Progress in Propulsion Physics. Vol. 2 Y1 - 2011 SN - 978-2-7598-0673-7 SP - 475 EP - 486 PB - EDP Sciences CY - Les Ulis ER -