TY - JOUR A1 - Näther, Niko A1 - Auger, V. A1 - Poghossian, Arshak A1 - Koudelka-Hep, M. A1 - Schöning, Michael Josef T1 - A miniaturized flow-through cell in SU-8 technique for EIS sensors JF - Biomedizinische Technik. 49 (2004), H. 2 Y1 - 2004 SN - 0932-4666 SP - 994 EP - 995 ER - TY - JOUR A1 - Näther, Niko A1 - Emmerich, Rüdiger A1 - Berger, Jörg A1 - Friedrich, Peter A1 - Henkel, Hartmut A1 - Schneider, Andreas A1 - Schöning, Michael Josef T1 - A novel gas-phase hydrogen peroxide sensor basing on a combined physical/chemical transduction mechanism JF - Nanofunctional materials, nanostructures, and novel devices for biological and chemical detection : November 27 - December 1, 2006, Boston, Massachusetts, USA ; [at the 2006 MRS Fall Meeting]. Y1 - 2006 SN - 978-1-60423-407-7 N1 - Materials Research Society symposium proceedings ; 951 ; MRS fall meeting ; (2006.11.27-12.01 : ; Boston, Mass.) SP - 63 EP - 68 PB - Materials Research Soc. CY - Warrendale, Pa. ER - TY - JOUR A1 - Näther, Niko A1 - Henkel, Hartmut A1 - Schneider, Andreas A1 - Schöning, Michael Josef T1 - Investigation of different catalytically active and passive materials for realising a hydrogen peroxide gas sensor JF - physica status solidi (a) . 206 (2009), H. 3 Y1 - 2009 SN - 1862-6319 N1 - Special Issue: Engineering of Functional Interfaces (EnFI 08) SP - 449 EP - 454 PB - Wiley CY - Weinheim ER - TY - CHAP A1 - Näther, Niko A1 - Juárez, Leon M. A1 - Emmerich, Rüdiger A1 - Berger, Jörg A1 - Friedrich, Peter A1 - Schöning, Michael Josef T1 - Detection of hydrogen peroxide (H2O2) at exposed temperatures for industrial processes N2 - An H2O2 sensor for the application in industrial sterilisation processes has been developed. Therefore, automated sterilisation equipment at laboratory scale has been constructed using parts from industrial sterilisation facilities. In addition, a software tool has been developed for the control of the sterilisation equipment at laboratory scale. First measurements with the developed sensor set-up as part of the sterilisation equipment have been performed and the sensor has been physically characterised by optical microscopy and SEM. KW - Biosensor KW - Gas sensor KW - hydrogen peroxide KW - sterilisation KW - catalytic decomposition Y1 - 2006 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:hbz:a96-opus-1418 ER - TY - CHAP A1 - Näther, Niko A1 - Poghossian, Arshak A1 - Platen, J. A1 - Yoshinobu, T. A1 - Koudelka-Hep, M. A1 - Schöning, Michael Josef T1 - Multi-parameter sensing of both physical and (bio-)chemical quantities using the same transducer principle T2 - Biochemical sensing utilisation of micro- and nanotechnologies : Warsaw, [23rd - 26th] November 2005 / ed. by M. Mascini ... Y1 - 2006 SP - 172 EP - 181 CY - Warsaw ER - TY - JOUR A1 - Näther, Niko A1 - Rolka, David A1 - Poghossian, Arshak A1 - Koudelka-Hep, M. A1 - Schöning, Michael Josef T1 - Two microcell flow-injection analysis (FIA) platforms for capacitive silicon-based field-effect sensors JF - Electrochimica Acta. 51 (2005), H. 5 Y1 - 2005 SN - 0013-4686 U6 - https://doi.org/10.1016/j.electacta.2005.04.066 SP - 924 EP - 929 ER - TY - PAT A1 - Nötzold, K. A1 - Bragard, Michael A1 - Fink, K. A1 - Griessel, R. A1 - Wegener, R. T1 - Cascaded H-bridge converter with transformer based cell power balancing in each voltage level : [Patentschrift] Y1 - 2014 N1 - Titel des US-Patents: Bypassed cascaded cell converter : [patent of invention]. - Außerdem veröffentlicht als CN103997231 (A) PB - Europäisches Patentamt / United States Patent and Trademark Office [u.a.] CY - Den Haag / Alexandria, VA ER - TY - CHAP A1 - Nötzold, K. A1 - Uphues, A. A1 - Wegener, R. A1 - Fink, K. A1 - Bragard, Michael A1 - Griessel, R. A1 - Soter, S. T1 - Inverter based test setup for LVRT verification of a full-scale 2 MW wind power converter T2 - 15th European Conference on Power Electronics and Applications (EPE), 2013 : 2 - 6 Sept. 2013, Lille, France / [EPE Association; PELS, IEEE Power Electronics Society] Y1 - 2013 SN - 978-1-4799-0115-9 (Online-Ausg.) U6 - https://doi.org/10.1109/EPE.2013.6634752 SP - 1037 EP - 1042 PB - IEEE CY - Piscataway, NJ ER - TY - CHAP A1 - Nötzold, K. A1 - Uphues, A. A1 - Wegener, R. A1 - Soter, S. A1 - Fink, K. A1 - Bragard, Michael A1 - Griessel, R. T1 - Inverter based test setup for LVRT verification of a full-scale 2 MW wind power converter T2 - EPE Joint Wind Energy and T&D Chapters Seminar : 28th and 29th of June 2012, in the Utzon Centre, Aalborg, Denmark ; papers, posters, presentations. - Session 2: Grid connection, compliance Y1 - 2012 PB - EPE Association CY - Brussels ER - TY - PAT A1 - O'Connell, Timothy A1 - Siegert, Petra A1 - Maurer, Karl-Heinz A1 - Schiedel, Marc-Steffen A1 - Vockenroth, Inga Kerstin T1 - Method for improving the cleaning action of a detergent or cleaning agent [Internationale Patentanmeldung] T1 - Verfahren zur Verbesserung der Reinigungsleistung eines Wasch- oder Reinigungsmittels Y1 - 2010 SP - 1 EP - 15 PB - WIPO CY - Genf ER - TY - CHAP A1 - O\'Heras, Carlos A1 - Digel, Ilya A1 - Temiz Artmann, Aysegül T1 - Nanostructured carbon-based column for LPS/protein adsorption : [abstract] N2 - The absence of a general method for endotoxin removal from liquid interfaces gives an opportunity to find new methods and materials to overcome this gap. Activated nanostructured carbon is a promising material that showed good adsorption properties due to its vast pore network and high surface area. The aim of this study is to find the adsorption rates for a carboneous material produced at different temperatures, as well as to reveal possible differences between the performance of the material for each of the adsorbates used during the study (hemoglobin, serum albumin and lipopolysaccharide, LPS). KW - Kohlenstofffaser KW - Adsorption KW - Lipopolysaccharide KW - aktivierte nanostrukturierte Kohlenstofffaser KW - lipopolysaccharides KW - activated nanostructured carbon Y1 - 2009 ER - TY - CHAP A1 - Oberländer, Jan A1 - Arreola, Julio A1 - Hansen, Christina A1 - Greeff, Anton A1 - Mayer, Marlena A1 - Keusgen, Michael A1 - Schöning, Michael Josef T1 - Impedimetric Biosensor to Enable Fast Evaluation of Gaseous Sterilization Processes T2 - MDPI Proceedings Y1 - 2017 U6 - https://doi.org/10.3390/proceedings1040435 N1 - Eurosensors 2017 Conference, Paris, France, 3–6 September 2017 VL - 1 IS - 4 ER - TY - JOUR A1 - Oberländer, Jan A1 - Bromm, Alexander A1 - Wendeler, Luisa A1 - Iken, Heiko A1 - Palomar Duran, Marlena A1 - Greeff, Anton A1 - Kirchner, Patrick A1 - Keusgen, Michael A1 - Schöning, Michael Josef T1 - Towards a biosensor to monitor the sterilisation efficiency of aseptic filling machines JF - Physica status solidi (a) N2 - Sterilisation processes are compulsory in medicine, pharmacy, and food industries to prevent infections of consumers and microbiological contaminations of products. Monitoring the sterilisation by conventional microbiological methods is time- and lab-consuming. To overcome this problem, in this work a novel biosensor has been proposed. The sensor enables a fast method to evaluate sterilisation processes. By means of thin-film technology the sensor's transducer structures in form of IDEs (interdigitated electrodes) have been fabricated on a silicon substrate. Physical characterisation of the developed sensor was done by AFM, SEM, and profilometry. Impedance analyses were conducted for the electrical characterisation. As microbiological layer spores of B. atrophaeus have been immobilised on the sensing structure; spores of this type are a well-known sterilisation test organism. Impedance measurements at a fixed frequency over time were performed to monitor the immobilisation process. A sterilisation process according to aseptic filling machines was applied to demonstrate the sensor functionality. After both, immobilisation and sterilisation, a change in impedance could successfully be detected. Y1 - 2015 U6 - https://doi.org/10.1002/pssa.201431900 SN - 1862-6319 VL - 212 IS - 6 SP - 1299 EP - 1305 PB - Wiley CY - Weinheim ER - TY - JOUR A1 - Oberländer, Jan A1 - Jildeh, Zaid B. A1 - Kirchner, Patrick A1 - Wendeler, Luisa A1 - Bromm, Alexander A1 - Iken, Heiko A1 - Wagner, Patrick A1 - Keusgen, Michael A1 - Schöning, Michael Josef T1 - Study of Interdigitated Electrode Arrays Using Experiments and Finite Element Models for the Evaluation of Sterilization Processes JF - Sensors N2 - In this work, a sensor to evaluate sterilization processes with hydrogen peroxide vapor has been characterized. Experimental, analytical and numerical methods were applied to evaluate and study the sensor behavior. The sensor set-up is based on planar interdigitated electrodes. The interdigitated electrode structure consists of 614 electrode fingers spanning over a total sensing area of 20 mm2. Sensor measurements were conducted with and without microbiological spores as well as after an industrial sterilization protocol. The measurements were verified using an analytical expression based on a first-order elliptical integral. A model based on the finite element method with periodic boundary conditions in two dimensions was developed and utilized to validate the experimental findings. Y1 - 2015 U6 - https://doi.org/10.3390/s151026115 SN - 1424-8220 N1 - This article belongs to the Special Issue "Gas Sensors—Designs and Applications" VL - 15 IS - 10 SP - 26115 EP - 26127 PB - MDPI CY - Basel ER - TY - CHAP A1 - Oberländer, Jan A1 - Jildeh, Zaid B. A1 - Kirchner, Patrick A1 - Wendeler, Luisa A1 - Bromm, Alexander A1 - Iken, Heiko A1 - Wagner, Patrick A1 - Keusgen, Michael A1 - Schöning, Michael Josef T1 - Experimental and numerical evaluation of interdigitated electrode array for monitoring gaseous sterilization processes T2 - 12. Dresdner Sensor-Symposium 2015 Y1 - 2015 U6 - https://doi.org/10.5162/12dss2015/P3.11 SP - 163 EP - 168 ER - TY - JOUR A1 - Oberländer, Jan A1 - Kirchner, Patrick A1 - Boyen, Hans-Gerd A1 - Schöning, Michael Josef T1 - Detection of hydrogen peroxide vapor by use of manganese(IV) oxide as catalyst for calorimetric gas sensors JF - Physica status solidi A: Applications and materials science N2 - In this work, the catalyst manganese(IV) oxide (MnO2), of calorimetric gas sensors (to monitor the sterilization agent vaporized hydrogen peroxide) has been investigated in more detail. Chemical analyses by means of X-ray-induced photoelectron spectroscopy have been performed to unravel the surface chemistry prior and after exposure to hydrogen peroxide vapor at elevated temperature, as applied in the sterilization processes of beverage cartons. The surface characterization reveals a change in oxidation states of the metal oxide catalyst after exposure to hydrogen peroxide. Additionally, a cleaning effect of the catalyst, which itself is attached to the sensor surface by means of a polymer interlayer, could be observed. Y1 - 2014 U6 - https://doi.org/10.1002/pssa.201330359 SN - 1521-396X (E-Journal); 1862-6319 (E-Journal); 0031-8965 (Print); 1862-6300 (Print) VL - 211 IS - 6 SP - 1372 EP - 1376 PB - Wiley-VCH CY - Weinheim ER - TY - CHAP A1 - Oberländer, Jan A1 - Kirchner, Patrick A1 - Keusgen, M. A1 - Schöning, Michael Josef T1 - Flexible polyimide-based calorimetric gas sensors for monitoring hy-drogen peroxide in sterilisation processes of aseptic filling machines T2 - Sensoren und Messsysteme 2014 ; Beiträge der 17. GMA/ITG-Fachtagung vom 3. bis 4. Juni 2014 in Nürnberg. (ITG-Fachbericht ; 250) Y1 - 2014 SN - 978-3-8007-3622-5 SP - 1 EP - 4 PB - VDE-Verl. CY - Düsseldorf ER - TY - JOUR A1 - Oberländer, Jan A1 - Kirchner, Patrick A1 - Keusgen, Michael A1 - Schöning, Michael Josef T1 - Strategies in developing thin-film sensors for monitoring aseptic food processes : Theoretical considerations and investigations of passivation materials JF - Electrochimica Acta N2 - The sterilization of packages in aseptic food processes is highly significant to maintain a consumer-safe product with extended shelf-life. Today, the sterilization of food packages is predominantly accomplished by gaseous hydrogen peroxide (H2O2) in combination with heat. In order to monitor this sterilization process, calorimetric gas sensors as differential set-up of two platinum temperature sensors representing a catalytically active (additionally deposition of MnO2) and a passive segment have been recently developed. The temperature rise of the exothermic decomposition serves as an indicator of the present H2O2 concentration. In the present work, a theoretical approach considering the sensor’s thermochemistry and physical transport phenomena was formulated to evaluate the temperature rise based on the energy content of gaseous H2O2. In a further part of this work, three polymers have been analyzed with respect to their application as passivation materials. The examined polymers are photoresist SU-8, perfluoroalkoxy (PFA) and fluorinated ethylene propylene (FEP). Thermal analyses by means of differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA) have been conducted to determine the operation limits of the polymers. The overall chemical resistance and stability of the polymers against the harsh environmental conditions during the sterilization process have been examined by attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR). Y1 - 2015 U6 - https://doi.org/10.1016/j.electacta.2015.06.126 SN - 0013-4686 VL - 183 SP - 130 EP - 136 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Oberländer, Jan A1 - Mayer, Marlena A1 - Greeff, Anton A1 - Keusgen, Michael A1 - Schöning, Michael Josef T1 - Spore-based biosensor to monitor the microbicidal efficacy of gaseous hydrogen peroxide sterilization processes JF - Biosensors and Bioelectronics N2 - In this work, a spore-based biosensor is evaluated to monitor the microbicidal efficacy of sterilization processes applying gaseous hydrogen peroxide (H2O2). The sensor is based on interdigitated electrode structures (IDEs) that have been fabricated by means of thin-film technologies. Impedimetric measurements are applied to study the effect of sterilization process on spores of Bacillus atrophaeus. This resilient microorganism is commonly used in industry to proof the sterilization efficiency. The sensor measurements are accompanied by conventional microbiological challenge tests, as well as morphological characterizations with scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The sensor measurements are correlated with the microbiological test routines. In both methods, namely the sensor-based and microbiological one, a tailing effect has been observed. The results are evaluated and discussed in a three-dimensional calibration plot demonstrating the sensor's suitability to enable a rapid process decision in terms of a successfully performed sterilization. Y1 - 2018 U6 - https://doi.org/10.1016/j.bios.2017.12.045 SN - 0956-5663 VL - 104 SP - 87 EP - 94 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Oehlenschläger, Katharina A1 - Volkmar, Marianne A1 - Stiefelmaier, Judith A1 - Langsdorf, Alexander A1 - Holtmann, Dirk A1 - Tippkötter, Nils A1 - Ulber, Roland T1 - New insights into the influence of pre-culture on robust solvent production of C. acetobutylicum JF - Applied Microbiology and Biotechnology N2 - Clostridia are known for their solvent production, especially the production of butanol. Concerning the projected depletion of fossil fuels, this is of great interest. The cultivation of clostridia is known to be challenging, and it is difficult to achieve reproducible results and robust processes. However, existing publications usually concentrate on the cultivation conditions of the main culture. In this paper, the influence of cryo-conservation and pre-culture on growth and solvent production in the resulting main cultivation are examined. A protocol was developed that leads to reproducible cultivations of Clostridium acetobutylicum. Detailed investigation of the cell conservation in cryo-cultures ensured reliable cell growth in the pre-culture. Moreover, a reason for the acid crash in the main culture was found, based on the cultivation conditions of the pre-culture. The critical parameter to avoid the acid crash and accomplish the shift to the solventogenesis of clostridia is the metabolic phase in which the cells of the pre-culture were at the time of inoculation of the main culture; this depends on the cultivation time of the pre-culture. Using cells from the exponential growth phase to inoculate the main culture leads to an acid crash. To achieve the solventogenic phase with butanol production, the inoculum should consist of older cells which are in the stationary growth phase. Considering these parameters, which affect the entire cultivation process, reproducible results and reliable solvent production are ensured. KW - Pre-culture KW - Metabolic shift KW - Acid crash KW - C. acetobutylicum KW - ABE KW - Butanol Y1 - 2024 U6 - https://doi.org/10.1007/s00253-023-12981-8 SN - 1432-0614 VL - 108 PB - Springer CY - Berlin, Heidelberg ER -