TY - JOUR A1 - Quittmann, Oliver J. A1 - Abel, Thomas A1 - Albracht, Kirsten A1 - Meskemper, Joshua A1 - Foitschik, Tina A1 - Strüder, Heiko K. T1 - Biomechanics of handcycling propulsion in a 30-min continuous load test at lactate threshold: Kinetics, kinematics, and muscular activity in able-bodied participants JF - European Journal of Applied Physiology N2 - Purpose This study aims to investigate the biomechanics of handcycling during a continuous load trial (CLT) to assess the mechanisms underlying fatigue in upper body exercise. Methods Twelve able-bodied triathletes performed a 30-min CLT at a power output corresponding to lactate threshold in a racing recumbent handcycle mounted on a stationary ergometer. During the CLT, ratings of perceived exertion (RPE), tangential crank kinetics, 3D joint kinematics, and muscular activity of ten muscles of the upper extremity and trunk were examined using motion capturing and surface electromyography. Results During the CLT, spontaneously chosen cadence and RPE increased, whereas crank torque decreased. Rotational work was higher during the pull phase. Peripheral RPE was higher compared to central RPE. Joint range of motion decreased for elbow-flexion and radial-duction. Integrated EMG (iEMG) increased in the forearm flexors, forearm extensors, and M. deltoideus (Pars spinalis). An earlier onset of activation was found for M. deltoideus (Pars clavicularis), M. pectoralis major, M. rectus abdominis, M. biceps brachii, and the forearm flexors. Conclusion Fatigue-related alterations seem to apply analogously in handcycling and cycling. The most distal muscles are responsible for force transmission on the cranks and might thus suffer most from neuromuscular fatigue. The findings indicate that peripheral fatigue (at similar lactate values) is higher in handcycling compared to leg cycling, at least for inexperienced participants. An increase in cadence might delay peripheral fatigue by a reduced vascular occlusion. We assume that the gap between peripheral and central fatigue can be reduced by sport-specific endurance training. Y1 - 2020 U6 - https://doi.org/10.1007/s00421-020-04373-x SN - 1439-6327 IS - 120 SP - 1403 EP - 1415 PB - Springer CY - Heidelberg ER - TY - JOUR A1 - Quittmann, Oliver J. A1 - Abel, Thomas A1 - Albracht, Kirsten A1 - Strüder, Heiko K. T1 - Reliability of muscular activation patterns and their alterations during incremental handcycling in able-bodied participants JF - Sports Biomechanics Y1 - 2019 U6 - https://doi.org/10.1080/14763141.2019.1593496 SN - 1752-6116 IS - Article in press PB - Taylor & Francis CY - London ER - TY - JOUR A1 - Quittmann, Oliver J. A1 - Abel, Thomas A1 - Albracht, Kirsten A1 - Strüder, Heiko K. T1 - Biomechanics of all-out handcycling exercise: kinetics, kinematics and muscular activity of a 15-s sprint test in able-bodied participants JF - Sports Biomechanics N2 - This study aims to quantify the kinematics, kinetics and muscular activity of all-out handcycling exercise and examine their alterations during the course of a 15-s sprint test. Twelve able-bodied competitive triathletes performed a 15-s all-out sprint test in a recumbent racing handcycle that was attached to an ergometer. During the sprint test, tangential crank kinetics, 3D joint kinematics and muscular activity of 10 muscles of the upper extremity and trunk were examined using a power metre, motion capturing and surface electromyography (sEMG), respectively. Parameters were compared between revolution one (R1), revolution two (R2), the average of revolution 3 to 13 (R3) and the average of the remaining revolutions (R4). Shoulder abduction and internal-rotation increased, whereas maximal shoulder retroversion decreased during the sprint. Except for the wrist angles, angular velocity increased for every joint of the upper extremity. Several muscles demonstrated an increase in muscular activation, an earlier onset of muscular activation in crank cycle and an increased range of activation. During the course of a 15-s all-out sprint test in handcycling, the shoulder muscles and the muscles associated to the push phase demonstrate indications for short-duration fatigue. These findings are helpful to prevent injuries and improve performance in all-out handcycling. KW - Handbike KW - sEMG KW - Paralympic sport KW - performance testing KW - high-intensity exercise Y1 - 2022 U6 - https://doi.org/10.1080/14763141.2020.1745266 SN - 1752-6116 (Onlineausgabe) SN - 1476-3141 (Druckausgabe) VL - 21 IS - 10 SP - 1200 EP - 1223 PB - Taylor & Francis CY - London ER - TY - JOUR A1 - Quittmann, Oliver J. A1 - Meskemper, Joshua A1 - Albracht, Kirsten A1 - Abel, Thomas A1 - Foitschik, Tina A1 - Strüder, Heiko K. T1 - Normalising surface EMG of ten upper-extremity muscles in handcycling: Manual resistance vs. sport-specific MVICs JF - Journal of Electromyography and Kinesiology N2 - Muscular activity in terms of surface electromyography (sEMG) is usually normalised to maximal voluntary isometric contractions (MVICs). This study aims to compare two different MVIC-modes in handcycling and examine the effect of moving average window-size. Twelve able-bodied male competitive triathletes performed ten MVICs against manual resistance and four sport-specific trials against fixed cranks. sEMG of ten muscles [M. trapezius (TD); M. pectoralis major (PM); M. deltoideus, Pars clavicularis (DA); M. deltoideus, Pars spinalis (DP); M. biceps brachii (BB); M. triceps brachii (TB); forearm flexors (FC); forearm extensors (EC); M. latissimus dorsi (LD) and M. rectus abdominis (RA)] was recorded and filtered using moving average window-sizes of 150, 200, 250 and 300 ms. Sport-specific MVICs were higher compared to manual resistance for TB, DA, DP and LD, whereas FC, TD, BB and RA demonstrated lower values. PM and EC demonstrated no significant difference between MVIC-modes. Moving average window-size had no effect on MVIC outcomes. MVIC-mode should be taken into account when normalised sEMG data are illustrated in handcycling. Sport-specific MVICs seem to be suitable for some muscles (TB, DA, DP and LD), but should be augmented by MVICs against manual/mechanical resistance for FC, TD, BB and RA. Y1 - 2020 U6 - https://doi.org/10.1016/j.jelekin.2020.102402 SN - 1050-6411 VL - 51 IS - Article 102402 PB - Elsevier CY - Amsterdam ER - TY - CHAP A1 - Raman, Aravind Hariharan A1 - Jung, Alexander A1 - Horváth, András A1 - Becker, Nadine A1 - Staat, Manfred ED - Staat, Manfred ED - Erni, Daniel T1 - Modification of a computer model of human stem cell-derived cardiomyocyte electrophysiology based on Patch-Clamp measurements T2 - 3rd YRA MedTech Symposium 2019 : May 24 / 2019 / FH Aachen N2 - Human induced pluripotent stem cells (hiPSCs) have shown to be promising in disease studies and drug screenings [1]. Cardiomyocytes derived from hiPSCs have been extensively investigated using patch-clamping and optical methods to compare their electromechanical behaviour relative to fully matured adult cells. Mathematical models can be used for translating findings on hiPSCCMs to adult cells [2] or to better understand the mechanisms of various ion channels when a drug is applied [3,4]. Paci et al. (2013) [3] developed the first model of hiPSC-CMs, which they later refined based on new data [3]. The model is based on iCells® (Fujifilm Cellular Dynamics, Inc. (FCDI), Madison WI, USA) but major differences among several cell lines and even within a single cell line have been found and motivate an approach for creating sample-specific models. We have developed an optimisation algorithm that parameterises the conductances (in S/F=Siemens/Farad) of the latest Paci et al. model (2018) [5] using current-voltage data obtained in individual patch-clamp experiments derived from an automated patch clamp system (Patchliner, Nanion Technologies GmbH, Munich). Y1 - 2019 SN - 978-3-940402-22-6 U6 - https://doi.org/10.17185/duepublico/48750 SP - 10 EP - 11 PB - Universität Duisburg-Essen CY - Duisburg ER - TY - JOUR A1 - Ramoshaba, Nthai E. A1 - Huisman, Hugo W. A1 - Lammertyn, Leandi A1 - Kotliar, Konstantin A1 - Schutte, Aletta E. A1 - Smith, Wayne T1 - Retinal microvasculature and masked hypertension in young adults: the African-PREDICT study JF - Hypertension Research N2 - Masked hypertension is known to induce microvascular complications. However, it is unclear whether early microvascular changes are already occurring in young, otherwise healthy adults. We therefore investigated whether retinal microvascular calibers and acute responses to a flicker stimulus are related to masked hypertension. We used the baseline data of 889 participants aged 20–30 years who were taking part in the African Prospective study on the Early Detection and Identification of Cardiovascular Disease and Hypertension. Clinic and 24-h ambulatory blood pressure were measured. The central retinal artery equivalent (CRAE) and central retinal vein equivalent were calculated from fundus images, and retinal vessel dilation was determined in response to flicker light-induced provocation. A smaller CRAE was observed in those with masked hypertension vs. those with normotension (157.1 vs. 161.2 measuring units, P < 0.001). In forward multivariable-adjusted regression analysis, only CRAE was negatively related to masked hypertension [adjusted R² = 0.267, β = −0.097 (95% CI = −0.165; −0.029), P = 0.005], but other retinal microvascular parameters were not associated with masked hypertension. In multivariable logistic regression analyses, masked hypertension [OR = 2.333, (95% CI = 1.316; 4.241), P = 0.004] was associated with a narrower CRAE. In young healthy adults, masked hypertension was associated with retinal arteriolar narrowing, thereby reflecting early microvascular alterations known to predict cardiovascular outcomes in later life. Y1 - 2020 U6 - https://doi.org/10.1038/s41440-020-0487-0 SN - 1348-4214 IS - 43 SP - 1231 EP - 1238 PB - Springer Nature CY - Osaka ER - TY - JOUR A1 - Rausch, Valentin A1 - Harbrecht, Andreas A1 - Kahmann, Stephanie Lucina A1 - Fenten, Thomas A1 - Jovanovic, Nebojsa A1 - Hackl, Michael A1 - Müller, Lars P. A1 - Staat, Manfred A1 - Wegmann, Kilian T1 - Osteosynthesis of Phalangeal Fractures: Biomechanical Comparison of Kirschner Wires, Plates, and Compression Screws JF - The Journal of Hand Surgery N2 - Purpose The aim of this study was to compare several osteosynthesis techniques (intramedullary headless compression screws, T-plates, and Kirschner wires) for distal epiphyseal fractures of proximal phalanges in a human cadaveric model. Methods A total of 90 proximal phalanges from 30 specimens (index, ring, and middle fingers) were used for this study. After stripping off all soft tissue, a transverse distal epiphyseal fracture was simulated at the proximal phalanx. The 30 specimens were randomly assigned to 1 fixation technique (30 per technique), either a 3.0-mm intramedullary headless compression screw, locking plate fixation with a 2.0-mm T-plate, or 2 oblique 1.0-mm Kirschner wires. Displacement analysis (bending, distraction, and torsion) was performed using optical tracking of an applied random speckle pattern after osteosynthesis. Biomechanical testing was performed with increasing cyclic loading and with cyclic load to failure using a biaxial torsion-tension testing machine. Results Cannulated intramedullary compression screws showed significantly less displacement at the fracture site in torsional testing. Furthermore, screws were significantly more stable in bending testing. Kirschner wires were significantly less stable than plating or screw fixation in any cyclic load to failure test setup. Conclusions Intramedullary compression screws are a highly stable alternative in the treatment of transverse distal epiphyseal phalangeal fractures. Kirschner wires seem to be inferior regarding displacement properties and primary stability. Clinical relevance Fracture fixation of phalangeal fractures using plate osteosynthesis may have the advantage of a very rigid reduction, but disadvantages such as stiffness owing to the more invasive surgical approach and soft tissue irritation should be taken into account. Headless compression screws represent a minimally invasive choice for fixation with good biomechanical properties. Y1 - 2020 U6 - https://doi.org/10.1016/j.jhsa.2020.04.010 SN - 0363-5023 VL - 45 IS - 10 SP - 987.e1 EP - 987.e8 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Rausch, Valentin A1 - Kahmann, Stephanie Lucina A1 - Baltschun, Christoph A1 - Staat, Manfred A1 - Müller, Lars P. A1 - Wegmann, Kilian T1 - Pressure distribution to the distal biceps tendon at the radial tuberosity: a biomechanical study JF - The Journal of Hand Surgery N2 - Purpose Mechanical impingement at the narrow radioulnar space of the tuberosity is believed to be an etiological factor in the injury of the distal biceps tendon. The aim of the study was to compare the pressure distribution at the proximal radioulnar space between 2 fixation techniques and the intact state. Methods Six right arms and 6 left arms from 5 female and 6 male frozen specimens were used for this study. A pressure transducer was introduced at the height of the radial tuberosity with the intact distal biceps tendon and after 2 fixation methods: the suture-anchor and the cortical button technique. The force (N), maximum pressure (kPa) applied to the radial tuberosity, and the contact area (mm²) of the radial tuberosity with the ulna were measured and differences from the intact tendon were detected from 60° supination to 60° pronation in 15° increments with the elbow in full extension and in 45° and 90° flexion of the elbow. Results With the distal biceps tendon intact, the pressures during pronation were similar regardless of extension and flexion and were the highest at 60° pronation with 90° elbow flexion (23.3 ± 53.5 kPa). After repair of the tendon, the mean peak pressure, contact area, and total force showed an increase regardless of the fixation technique. Highest peak pressures were found using the cortical button technique at 45° flexion of the elbow and 60° pronation. These differences were significantly different from the intact tendon. The contact area was significantly larger in full extension and 15°, 30°, and 60° pronation using the cortical button technique. Conclusions Pressures on the distal biceps tendon at the radial tuberosity increase during pronation, especially after repair of the tendon. Clinical relevance Mechanical impingement could play a role in both the etiology of primary distal biceps tendon ruptures and the complications occurring after fixation of the tendon using certain techniques. Y1 - 2020 U6 - https://doi.org/10.1016/j.jhsa.2020.01.006 SN - 0363-5023 VL - 45 IS - 8 SP - 776.e1 EP - 776.e9 PB - Elsevier CY - Amsterdam ER - TY - CHAP A1 - Richter, Charlotte A1 - Braunstein, Bjoern A1 - Stäudle, Benjamin A1 - Attias, Julia A1 - Suess, Alexander A1 - Weber, T. A1 - Rittweger, Joern A1 - Green, David A. A1 - Albracht, Kirsten T1 - In vivo fascicle length of the gastrocnemius muscle during walking in simulated martian gravity using two different body weight support devices T2 - 23rd Annual Congress of the European College of Sport Science, Dublin, Irland Y1 - 2018 ER - TY - JOUR A1 - Richter, Charlotte A1 - Braunstein, Bjoern A1 - Stäudle, Benjamin A1 - Attias, Julia A1 - Suess, Alexander A1 - Weber, Tobias A1 - Mileva, Katja N. A1 - Rittweger, Joern A1 - Green, David A. A1 - Albracht, Kirsten T1 - Gastrocnemius medialis contractile behavior is preserved during 30% body weight supported gait training JF - Frontiers in Sports and Active Living N2 - Rehabilitative body weight supported gait training aims at restoring walking function as a key element in activities of daily living. Studies demonstrated reductions in muscle and joint forces, while kinematic gait patterns appear to be preserved with up to 30% weight support. However, the influence of body weight support on muscle architecture, with respect to fascicle and series elastic element behavior is unknown, despite this having potential clinical implications for gait retraining. Eight males (31.9 ± 4.7 years) walked at 75% of the speed at which they typically transition to running, with 0% and 30% body weight support on a lower-body positive pressure treadmill. Gastrocnemius medialis fascicle lengths and pennation angles were measured via ultrasonography. Additionally, joint kinematics were analyzed to determine gastrocnemius medialis muscle–tendon unit lengths, consisting of the muscle's contractile and series elastic elements. Series elastic element length was assessed using a muscle–tendon unit model. Depending on whether data were normally distributed, a paired t-test or Wilcoxon signed rank test was performed to determine if body weight supported walking had any effects on joint kinematics and fascicle–series elastic element behavior. Walking with 30% body weight support had no statistically significant effect on joint kinematics and peak series elastic element length. Furthermore, at the time when peak series elastic element length was achieved, and on average across the entire stance phase, muscle–tendon unit length, fascicle length, pennation angle, and fascicle velocity were unchanged with respect to body weight support. In accordance with unchanged gait kinematics, preservation of fascicle–series elastic element behavior was observed during walking with 30% body weight support, which suggests transferability of gait patterns to subsequent unsupported walking. KW - AlterG KW - rehabilitation KW - gait KW - walking KW - ultrasound imaging KW - series elastic element behavior KW - muscle fascicle behavior KW - unloading Y1 - 2021 U6 - https://doi.org/10.3389/fspor.2020.614559 SN - 2624-9367 VL - 2021 IS - 2 PB - Frontiers CY - Lausanne ER - TY - JOUR A1 - Rittweger, Jörn A1 - Albracht, Kirsten A1 - Flück, Martin A1 - Ruoss, Severin A1 - Brocca, Lorenza A1 - Longa, Emanuela A1 - Moriggi, Manuela A1 - Seynnes, Olivier A1 - Di Giulio, Irene A1 - Tenori, Leonardo A1 - Vignoli, Alessia A1 - Capri, Miriam A1 - Gelfi, Cecilia A1 - Luchinat, Claudio A1 - Franceschi, Claudio A1 - Bottinelli, Roberto A1 - Cerretelli, Paolo A1 - Narici, Marco T1 - Sarcolab pilot study into skeletal muscle’s adaptation to longterm spaceflight JF - npj Microgravity Y1 - 2018 U6 - https://doi.org/10.1038/s41526-018-0052-1 SN - 2373-8065 VL - 4 IS - 1 SP - 1 EP - 9 PB - Nature Portfolio ER - TY - JOUR A1 - Sadykov, Rustam A1 - Digel, Ilya A1 - Temiz Artmann, Aysegül A1 - Porst, Dariusz A1 - Linder, Peter A1 - Kayser, Peter A1 - Artmann, Gerhard A1 - Savitskaya, Irina A1 - Zhubanova, Azhar T1 - Oral lead exposure induces dysbacteriosis in rats JF - Journal of Occupational Health. 51 (2009) (2009), H. 1 Y1 - 2009 SN - 1348-9585 SP - 64 EP - 73 ER - TY - JOUR A1 - Savitskaya, I. S. A1 - Kistaubayeva, A. S. A1 - Digel, Ilya A1 - Shokatayeva, D. H. T1 - Physicochemical and Antibacterial Properties of Composite Films Based on Bacterial Cellulose and Chitosan for Wound Dressing Materials JF - Eurasian Chemico-Technological Journal Y1 - 2017 U6 - https://doi.org/10.18321/ectj670 SN - 2522-4867 VL - 19 IS - 3 SP - 255 EP - 264 ER - TY - JOUR A1 - Savitskaya, I.S. A1 - Kistaubayeva, A.S. A1 - Ignatova, L.V. A1 - Digel, Ilya T1 - Antimicrobial and wound healing properties of a bacterial cellulose based material containing B. subtilis cells JF - Heliyon Y1 - 2019 U6 - https://doi.org/10.1016/j.heliyon.2019.e02592 SN - 2405-8440 VL - 5 IS - 10 SP - Artikelnummer e02592 PB - Elsevier CY - Amsterdam ER - TY - CHAP A1 - Savitskaya, Irina S. A1 - Kistaubayeva, Aida S. A1 - Akimbekov, Nuraly S. A1 - Digel, Ilya A1 - Shokatayeva, Dina A1 - Zhubanova, Azhar Achmet T1 - Prospective Use of Probiotics Immobilized on Sorbents with Nanostructured Surfaces T2 - Carbon Nanomaterials in Biomedicine and the Environment N2 - Activated carbons are known as excellent adsorbents. Their applications include the adsorptive removal of color, odor, taste, undesirable organic and inorganic pollutants from drinking and waste water; air purification in inhabited spaces; purification of many chemicals, pharmaceutical products and many others. This chapter elucidates the role of normal microflora in the maintenance of human health and presents materials on possible clinical displays of microecological infringements and ways of their correction. It presents new developments concerning new probiotics with immobilized Lactobacillus and Bacillus. The chapter considers the mechanisms of the intestine disbacteriosis correction by sorbed probiotics. It demonstrates the advantages and creation prospects of immobilized probiotics developed on the basis of carbonized rice husk. There are great prospects for the development of medical biotechnology due to use of carbon sorbents with a nanostructured surface. Microbial communities form a biocenosis of the biotope and together with the host organism create permanent or temporary ecosystems. Y1 - 2020 SN - 978-981-4800-27-3 U6 - https://doi.org/10.1201/9780429428647-12 SP - 229 EP - 267 PB - Jenny Stanford Publishing CY - Singapore ER - TY - CHAP A1 - Savitskaya, Irina S. A1 - Kistaubayeva, Aida S. A1 - Akimbekov, Nuraly S. A1 - Digel, Ilya A1 - Zhubanova, Azhar A. T1 - Performance of Bio-Composite Carbonized Materials in Probiotic Applications T2 - World Academy of Science, Engineering and Technology International Journal of Biotechnology and Bioengineering Y1 - 2013 VL - 7 IS - 7 SP - 685 EP - 689 ER - TY - JOUR A1 - Savitskaya, Irina A1 - Zhantlessova, Sirina A1 - Kistaubayeva, Aida A1 - Ignatova, Ludmila A1 - Shokatayeva, Dina A1 - Sinyavsky, Yuriy A1 - Kushugulova, Almagul A1 - Digel, Ilya T1 - Prebiotic cellulose–pullulan matrix as a “vehicle” for probiotic biofilm delivery to the host large intestine JF - Polymers N2 - This study describes the development of a new combined polysaccharide-matrix-based technology for the immobilization of Lactobacillus rhamnosus GG (LGG) bacteria in biofilm form. The new composition allows for delivering the bacteria to the digestive tract in a manner that improves their robustness compared with planktonic cells and released biofilm cells. Granules consisting of a polysaccharide matrix with probiotic biofilms (PMPB) with high cell density (>9 log CFU/g) were obtained by immobilization in the optimized nutrient medium. Successful probiotic loading was confirmed by fluorescence microscopy and scanning electron microscopy. The developed prebiotic polysaccharide matrix significantly enhanced LGG viability under acidic (pH 2.0) and bile salt (0.3%) stress conditions. Enzymatic extract of feces, mimicking colon fluid in terms of cellulase activity, was used to evaluate the intestinal release of probiotics. PMPB granules showed the ability to gradually release a large number of viable LGG cells in the model colon fluid. In vivo, the oral administration of PMPB granules in rats resulted in the successful release of probiotics in the colon environment. The biofilm-forming incubation method of immobilization on a complex polysaccharide matrix tested in this study has shown high efficacy and promising potential for the development of innovative biotechnologies. KW - immobilization KW - prebiotic KW - bacterial cellulose KW - biofilms KW - Lactobacillus rhamnosus GG Y1 - 2023 U6 - https://doi.org/10.3390/polym16010030 N1 - This article belongs to the Section "Polymer Composites and Nanocomposites" IS - 16(1) PB - MDPI CY - Basel ER - TY - JOUR A1 - Schael, S. A1 - Atanasyan, A. A1 - Berdugo, J. A1 - Bretz, T. A1 - Czupalla, Markus A1 - Dachwald, Bernd A1 - Doetinchem, P. von A1 - Duranti, M. A1 - Gast, H. A1 - Karpinski, W. A1 - Kirn, T. A1 - Lübelsmeyer, K. A1 - Maña, C. A1 - Marrocchesi, P.S. A1 - Mertsch, P. A1 - Moskalenko, I.V. A1 - Schervan, T. A1 - Schluse, M. A1 - Schröder, K.-U. A1 - Schultz von Dratzig, A. A1 - Senatore, C. A1 - Spies, L. A1 - Wakely, S.P. A1 - Wlochal, M. A1 - Uglietti, D. A1 - Zimmermann, J. T1 - AMS-100: The next generation magnetic spectrometer in space – An international science platform for physics and astrophysics at Lagrange point 2 JF - Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment Y1 - 2019 U6 - https://doi.org/10.1016/j.nima.2019.162561 SN - 0168-9002 VL - 944 IS - 162561 PB - Elsevier CY - Amsterdam ER - TY - CHAP A1 - Schartner, Karl-Heinz A1 - Loeb, H. W. A1 - Dachwald, Bernd A1 - Ohndorf, Andreas T1 - Perspectives of electric propulsion for outer planetary and deep space missions T2 - European Planetary Science Congress 2009 N2 - Solar-electric propulsion (SEP) is superior with respect to payload capacity, flight time and flexible launch window to the conventional interplanetary transfer method using chemical propulsion combined with gravity assists. This fact results from the large exhaust velocities of electric low–thrust propulsion and is favourable also for missions to the giant planets, Kuiper-belt objects and even for a heliopause probe (IHP) as shown in three studies by the authors funded by DLR. They dealt with a lander for Europa and a sample return mission from a mainbelt asteroid [1], with the TANDEM mission [2]; the third recent one investigates electric propulsion for the transfer to the edge of the solar system. All studies are based on triple-junction solar arrays, on rf-ion thrusters of the qualified RIT-22 type and they use the intelligent trajectory optimization program InTrance [3]. Y1 - 2009 N1 - European Planetary Science Congress 2009, 13-18 September, Potsdam, Germany SP - 416 EP - 416 ER - TY - THES A1 - Schieffer, Andre T1 - Studies on diversity and coexistence in an experimental microbial community N2 - Biodiversity and the coexistence of species have puzzled and fascinated biologists since decades and is a hotspot in todays’ natural sciences. Preserving this biodiversity is a great challenge as habitats and environments underlying tremendous changes like climate change and the loss of natural habitats, which are mainly due to anthropogenic influences. The coexistence of numerous species even in homogeneous environments is a stunning feature of natural communities and has been summarized under the term ‘paradox of plankton’. Up to now, there are several mechanisms discussed, which may contribute to local and global diversity of organisms. Several interspecific trade offs have been identified maintaining the coexistence of species like their abilities regarding competition and predator avoidance, their capability to disperse in space and time, and their ability to exploit variable resources. Further, micro-evolutionary dynamics supporting the coexistence of species have been added to our knowledge, and deriving from theoretical deterministic models, non-linear dynamics which describe the temporal fluctuation of abundances of organisms. Whereas competition and predation seem to be clue structural elements within interacting organisms, the intrinsic dynamic behavior – by means of temporal changes in abundance - plays an important role regarding coexistence within a community. The present work sheds light on different factors affecting the coexistence of species using experimental microbial model systems consisting of a bacterivorous ciliate as the predator and two bacteria strains as prey organism. Additionally, another experimental setup consisting of two up to five bacteria species competing for one limiting resource was investigated. Highly controllable chemostat systems were established to exclude extrinsic disturbances. According to theoretical analyses I was able to show - experimentally and theoretically - that phenotypic plasticity of one species within a microbial one-predator-two-prey food web enlarges the range of possible coexistence of all species under different dynamic conditions, compared to a food web without phenotypic plasticity. This was accompanied by non-linear (chaotic) population dynamics within all experimental systems showing phenotypic plasticity. The experiments on the interplay of competition, predation and invasion showed that all aspects have an influence on species coexistence. Under undisturbed controlled conditions all aspects were analyzed in detail and in combination. Populations showed oscillations which were shown by quasi-chaotic attractors in phase space diagrams. Competition experiments with two up to five bacteria species competing for one limiting resource showed that all organisms were able to coexist which was mediated by species oscillations entering a regime of chaos. Besides that fact it was found, that the productivity (biomass) as well as the total cell numbers – under the same nutrition supply – increased by an increasing number of species in the experimental systems. Up to now, the occurrence of non-linear dynamics in well controlled experimental studies has been recognized several times and this phenomenon seemed to be more common in natural systems than generally assumed. N2 - Biodiversität und die Koexistenz von Arten fasziniert und verblüfft Biologen seit Jahr-zehnten und stellen einen Schwerpunkt in der heutigen Umweltforschung dar. Der Schutz und die Konservierung dieser Mannigfaltigkeit stellen eine große Herausfor-derung dar, da die natürlichen Lebensräume sowie die Umwelt enormen Verände-rungen unterworfen sind, welche meist in einem anthropogenen Ursprung wurzeln. Die Koexistenz vieler Arten, auch in relativ homogenen Habitaten ist ein faszinieren-des Charakteristikum natürlicher Lebensgemeinschaften und wird als ‚Paradox des Planktons‘ bezeichnet. Gegenwärtig werden diverse Ursachen diskutiert, welche vermutlich zur lokalen und globalen Diversität von Organismen beitragen. Einige die-ser möglichen Ursachen, die zur Aufrechterhaltung der Koexistenz der Arten beitra-gen, wurden identifiziert: Das Vermögen der Konkurrenz- und Prädationsvermeidung, die Fähigkeit räumlicher sowie zeitlicher Verteilung, sowie das Vermögen variable Ressourcen zu nutzen. Des Weiteren wurden mikro-evolutionäre Phänomene und Dynamiken identifiziert, sowie, von theoretischen deterministischen Modellen ausge-hend, nichtlineare Dynamiken, welche die zeitlichen Schwankungen der Abundanzen von Organismen beschreiben. Diese Aspekte stellen die Schlüsselkomponenten zwi-schen interagierenden Organismen dar, wobei das intrinsiche, nicht lineare dynami-sche Verhalten in Form von zeitlichen Veränderungen in Abundanzen eine zusätzli-che entscheidende Rolle bezüglich der Koexistenz von Arten spielen kann. Einige dieser Aspekte wurden in der vorliegenden Arbeit untersucht. In Anlehnung an theoretische Analysen konnte experimentell sowie theoretisch gezeigt werden, dass phänotypische Plastizität in einer Bakterienart in einem mikrobiellen Ein-Räuber-zwei-Beute-Nahrungsgewebe den Bereich der möglichen Koexistenz unter sich än-dernden experimentellen Bedingungen (Änderungen der Durchflussraten der Chemostate) – im direkten Vergleich zu einem experimentellen Nahrungsgewebe ohne phänotypische Plastizität – erweitern kann. Dies wurde begleitet durch nicht lineare Abundanzschwankungen in den Populationen aller untersuchten Versuchs-ansätze. In weiteren Untersuchungen wurde das Zusammenspiel von Konkurrenz, Prädation und Invasion in einer experimentellen mikrobiellen Gemeinschaft untersucht. Unter kontrollierten Bedingungen konnten diese Aspekte detailliert untersucht werden und es konnten Aufschlüsse darüber gewonnen werden, welche Reaktionen (Interaktionen) innerhalb der untersuchten Gemeinschaften stattfinden. Im Versuchsverlauf wurden Veränderungen in den Abundanzen sowie chaotische Schwankungen der Zellzahlen festgestellt. In Konkurrenzexperimenten von zwei bis zu fünf um eine limitierende Ressource konkurrierende Bakterienarten konnte gezeigt werden, dass alle Arten – vermittelt durch chaotische Abundanzschwankungen – nebeneinander koexistieren konnten. Begleitend dazu wurde herausgefunden, dass die Produktivität (Biomasse) sowie die Gesamtzellzahl bei gleicher Nahrungsverfügbarkeit der experimentellen Systeme mit steigender Artenzahl zunehmen. Gegenwärtig ist das Auftreten von Chaos in gut kontrollierten experimentellen Studien vereinzelt beobachtet worden, wobei dieses Phänomen jedoch häufiger in der Natur aufzutreten scheint als generell vermutet. Y1 - 2012 N1 - Köln, Univ., Diss., 2012 ER -