TY - JOUR A1 - Götten, Falk A1 - Finger, Felix A1 - Havermann, Marc A1 - Braun, Carsten A1 - Marino, M. A1 - Bil, C. T1 - Full configuration drag estimation of short-to-medium range fixed-wing UAVs and its impact on initial sizing optimization JF - CEAS Aeronautical Journal N2 - The paper presents the derivation of a new equivalent skin friction coefficient for estimating the parasitic drag of short-to-medium range fixed-wing unmanned aircraft. The new coefficient is derived from an aerodynamic analysis of ten different unmanned aircraft used for surveillance, reconnaissance, and search and rescue missions. The aircraft is simulated using a validated unsteady Reynolds-averaged Navier Stokes approach. The UAV’s parasitic drag is significantly influenced by the presence of miscellaneous components like fixed landing gears or electro-optical sensor turrets. These components are responsible for almost half of an unmanned aircraft’s total parasitic drag. The new equivalent skin friction coefficient accounts for these effects and is significantly higher compared to other aircraft categories. It is used to initially size an unmanned aircraft for a typical reconnaissance mission. The improved parasitic drag estimation yields a much heavier unmanned aircraft when compared to the sizing results using available drag data of manned aircraft. KW - Parasitic drag KW - UAV KW - CFD KW - Aircraft sizing Y1 - 2021 U6 - https://doi.org/10.1007/s13272-021-00522-w SN - 1869-5590 (Online) SN - 1869-5582 (Print) N1 - Corresponding author: Falk Götten VL - 12 SP - 589 EP - 603 PB - Springer CY - Berlin ER - TY - JOUR A1 - Götten, Falk A1 - Havermann, Marc A1 - Braun, Carsten A1 - Marino, Matthew A1 - Bil, Cees T1 - Aerodynamic Investigations of UAV Sensor Turrets - A Combined Wind-tunnel and CFD Approach JF - SciTech 2021, AIAA SciTech Forum, online, WW, Jan 11-15, 2021 Y1 - 2021 U6 - https://doi.org/10.2514/6.2021-1535 SP - 1 EP - 12 PB - AIAA CY - Reston, Va. ER - TY - JOUR A1 - Hackl, Michael A1 - Buess, Eduard A1 - Kammerlohr, Sandra A1 - Nacov, Julia A1 - Staat, Manfred A1 - Leschinger, Tim A1 - Müller, Lars P. A1 - Wegmann, Kilian T1 - A "comma sign"-directed subscapularis repair in anterosuperior rotator cuff tears yields biomechanical advantages in a cadaveric model JF - The american journal of sports medicine N2 - Background: Additional stabilization of the “comma sign” in anterosuperior rotator cuff repair has been proposed to provide biomechanical benefits regarding stability of the repair. Purpose: This in vitro investigation aimed to investigate the influence of a comma sign–directed reconstruction technique for anterosuperior rotator cuff tears on the primary stability of the subscapularis tendon repair. Study Design: Controlled laboratory study. Methods: A total of 18 fresh-frozen cadaveric shoulders were used in this study. Anterosuperior rotator cuff tears (complete full-thickness tear of the supraspinatus and subscapularis tendons) were created, and supraspinatus repair was performed with a standard suture bridge technique. The subscapularis was repaired with either a (1) single-row or (2) comma sign technique. A high-resolution 3D camera system was used to analyze 3-mm and 5-mm gap formation at the subscapularis tendon-bone interface upon incremental cyclic loading. Moreover, the ultimate failure load of the repair was recorded. A Mann-Whitney test was used to assess significant differences between the 2 groups. Results: The comma sign repair withstood significantly more loading cycles than the single-row repair until 3-mm and 5-mm gap formation occurred (P≤ .047). The ultimate failure load did not reveal any significant differences when the 2 techniques were compared (P = .596). Conclusion: The results of this study show that additional stabilization of the comma sign enhanced the primary stability of subscapularis tendon repair in anterosuperior rotator cuff tears. Although this stabilization did not seem to influence the ultimate failure load, it effectively decreased the micromotion at the tendon-bone interface during cyclic loading. Clinical Relevance: The proposed technique for stabilization of the comma sign has shown superior biomechanical properties in comparison with a single-row repair and might thus improve tendon healing. Further clinical research will be necessary to determine its influence on the functional outcome. Y1 - 2021 U6 - https://doi.org/10.1177/03635465211031506 SN - 1552-3365 SN - 0363-5465 VL - 49 IS - 12 SP - 3212 EP - 3217 PB - Sage CY - London ER - TY - JOUR A1 - Hackl, Michael A1 - Nacov, Julia A1 - Kammerlohr, Sandra A1 - Staat, Manfred A1 - Buess, Eduard A1 - Leschinger, Tim A1 - Müller, Lars P. A1 - Wegmann, Kilian T1 - Intratendinous Strain Variations of the Supraspinatus Tendon Depending on Repair Technique: A Biomechanical Analysis Regarding the Cause of Medial Cuff Failure JF - The American Journal of Sports Medicine Y1 - 2021 U6 - https://doi.org/10.1177/03635465211006138 SN - 1552-3365 SN - 0363-5465 VL - 49 IS - 7 SP - 1847 EP - 1853 PB - Sage CY - London ER - TY - JOUR A1 - Hagenkamp, Markus A1 - Blanke, Tobias A1 - Döring, Bernd T1 - Thermoelectric building temperature control: a potential assessment JF - International Journal of Energy and Environmental Engineering N2 - This study focuses on thermoelectric elements (TEE) as an alternative for room temperature control. TEE are semi-conductor devices that can provide heating and cooling via a heat pump effect without direct noise emissions and no refrigerant use. An efficiency evaluation of the optimal operating mode is carried out for different numbers of TEE, ambient temperatures, and heating loads. The influence of an additional heat recovery unit on system efficiency and an unevenly distributed heating demand are examined. The results show that TEE can provide heat at a coefficient of performance (COP) greater than one especially for small heating demands and high ambient temperatures. The efficiency increases with the number of elements in the system and is subject to economies of scale. The best COP exceeds six at optimal operating conditions. An additional heat recovery unit proves beneficial for low ambient temperatures and systems with few TEE. It makes COPs above one possible at ambient temperatures below 0 ∘C. The effect increases efficiency by maximal 0.81 (from 1.90 to 2.71) at ambient temperature 5 K below room temperature and heating demand Q˙h=100W but is subject to diseconomies of scale. Thermoelectric technology is a valuable option for electricity-based heat supply and can provide cooling and ventilation functions. A careful system design as well as an additional heat recovery unit significantly benefits the performance. This makes TEE superior to direct current heating systems and competitive to heat pumps for small scale applications with focus on avoiding noise and harmful refrigerants. Y1 - 2021 U6 - https://doi.org/10.1007/s40095-021-00424-x N1 - Corresponding author: Markus Hagenkamp VL - 13 SP - 241 EP - 254 PB - Springer CY - Berlin ER - TY - CHAP A1 - Handschuh, Nils A1 - Stollenwerk, Dominik A1 - Borchert, Jörg T1 - Operation of thermal storage power plants under high renewable grid penetration T2 - NEIS 2021: Conference on Sustainable Energy Supply and Energy Storage Systems N2 - The planned coal phase-out in Germany by 2038 will lead to the dismantling of power plants with a total capacity of approx. 30 GW. A possible further use of these assets is the conversion of the power plants to thermal storage power plants; the use of these power plants on the day-ahead market is considerably limited by their technical parameters. In this paper, the influence of the technical boundary conditions on the operating times of these storage facilities is presented. For this purpose, the storage power plants were described as an MILP problem and two price curves, one from 2015 with a relatively low renewable penetration (33 %) and one from 2020 with a high renewable energy penetration (51 %) are compared. The operating times were examined as a function of the technical parameters and the critical influencing factors were investigated. The thermal storage power plant operation duration and the energy shifted with the price curve of 2020 increases by more than 25 % compared to 2015. KW - storage optimisation KW - storage dispatch KW - thermal storage Y1 - 2021 SN - 978-3-8007-5651-3 N1 - NEIS 2021: Conference on Sustainable Energy Supply and Energy Storage Systems. 13-14 September 2021. Hamburg, Germany SP - 261 EP - 265 PB - VDE Verlag CY - Berlin ER - TY - JOUR A1 - Harzheim, Thomas A1 - Mühmel, Marc A1 - Heuermann, Holger T1 - A SFCW harmonic radar system for maritime search and rescue using passive and active tags JF - International Journal of Microwave and Wireless Technologies N2 - This paper introduces a new maritime search and rescue system based on S-band illumination harmonic radar (HR). Passive and active tags have been developed and tested while attached to life jackets and a small boat. In this demonstration test carried out on the Baltic Sea, the system was able to detect and range the active tags up to a distance of 5800 m using an illumination signal transmit-power of 100 W. Special attention is given to the development, performance, and conceptual differences between passive and active tags used in the system. Guidelines for achieving a high HR dynamic range, including a system components description, are given and a comparison with other HR systems is performed. System integration with a commercial maritime X-band navigation radar is shown to demonstrate a solution for rapid search and rescue response and quick localization. KW - Radar KW - microwave measurements KW - harmonic radar KW - harmonic radar tags KW - nonlinear VNA measurements Y1 - 2021 U6 - https://doi.org/10.1017/S1759078721000520 VL - 13 IS - Special Issue 7 SP - 691 EP - 707 PB - Cambridge University Press CY - Cambridge ER - TY - JOUR A1 - Heel, Mareike van A1 - Dikta, Gerhard A1 - Braekers, Roel T1 - Bootstrap based goodness‑of‑fit tests for binary multivariate regression models JF - Journal of the Korean Statistical Society N2 - We consider a binary multivariate regression model where the conditional expectation of a binary variable given a higher-dimensional input variable belongs to a parametric family. Based on this, we introduce a model-based bootstrap (MBB) for higher-dimensional input variables. This test can be used to check whether a sequence of independent and identically distributed observations belongs to such a parametric family. The approach is based on the empirical residual process introduced by Stute (Ann Statist 25:613–641, 1997). In contrast to Stute and Zhu’s approach (2002) Stute & Zhu (Scandinavian J Statist 29:535–545, 2002), a transformation is not required. Thus, any problems associated with non-parametric regression estimation are avoided. As a result, the MBB method is much easier for users to implement. To illustrate the power of the MBB based tests, a small simulation study is performed. Compared to the approach of Stute & Zhu (Scandinavian J Statist 29:535–545, 2002), the simulations indicate a slightly improved power of the MBB based method. Finally, both methods are applied to a real data set. Y1 - 2021 U6 - https://doi.org/10.1007/s42952-021-00142-4 SN - 2005-2863 (Online) SN - 1226-3192 (Print) N1 - Corresponding author: Mareike van Heel VL - 51 PB - Springer Nature CY - Singapur ER - TY - JOUR A1 - Heiligers, Jeannette A1 - Schoutetens, Frederic A1 - Dachwald, Bernd T1 - Photon-sail equilibria in the alpha centauri system JF - Journal of Guidance, Control, and Dynamics Y1 - 2021 U6 - https://doi.org/10.2514/1.G005446 SN - 1533-3884 SN - 0731-5090 SN - 0162-3192 VL - 44 IS - 5 SP - 1053 EP - 1061 ER - TY - JOUR A1 - Heinke, Lars N. A1 - Knicker, Axel J. A1 - Albracht, Kirsten T1 - Test-retest reliability of the internal shoulder rotator muscles' stretch reflex in healthy men JF - Journal of Electromyography and Kinesiology N2 - Until now the reproducibility of the short latency stretch reflex of the internal rotator muscles of the glenohumeral joint has not been identified. Twenty-three healthy male participants performed three sets of external shoulder rotation stretches with various pre-activation levels on two different dates of measurement to assess test-retest reliability. All stretches were applied with a dynamometer acceleration of 104°/s2 and a velocity of 150°/s. Electromyographical response was measured via surface EMG. Reflex latencies showed a pre-activation effect (ƞ2 = 0,355). ICC ranged from 0,735 to 0,909 indicating an overall “good” relative reliability. SRD 95% lay between ±7,0 to ±12,3 ms.. The reflex gain showed overall poor test-retest reproducibility. The chosen methodological approach presented a suitable test protocol for shoulder muscles stretch reflex latency evaluation. A proof-of-concept study to validate the presented methodical approach in shoulder involvement including subjects with clinically relevant conditions is recommended. KW - stretch reflex KW - shoulder KW - test-retest reliability KW - intraclass correlation coefficient KW - standard error of measurement Y1 - 2021 U6 - https://doi.org/10.1016/j.jelekin.2021.102611 SN - 1050-6411 VL - 62 IS - Article 102611 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Heuermann, Holger A1 - Harzheim, Thomas A1 - Cronenbroeck, Tobias T1 - First SIMO harmonic radar based on the SFCW concept and the HR transfer function JF - Remote sensing N2 - This paper presents a new SIMO radar system based on a harmonic radar (HR) stepped frequency continuous wave (SFCW) architecture. Simple tags that can be electronically individually activated and deactivated via a DC control voltage were developed and combined to form an MO array field. This HR operates in the entire 2.45 GHz ISM band for transmitting the illumination signal and receives at twice the stimulus frequency and bandwidth centered around 4.9 GHz. This paper presents the development, the basic theory of a HR system for the characterization of objects placed into the propagation path in-between the radar and the reflectors (similar to a free-space measurement with a network analyzer) as well as first measurements performed by the system. Further detailed measurement series will be made available later on to other researchers to develop AI and machine learning based signal processing routines or synthetic aperture radar algorithms for imaging, object recognition, and feature extraction. For this purpose, the necessary information is published in this paper. It is explained in detail why this SIMO-HR can be an attractive solution augmenting or replacing existing systems for radar measurements in production technology for material under test measurements and as a simplified MIMO system. The novel HR transfer function, which is a basis for researchers and developers for material characterization or imaging algorithms, is introduced and metrologically verified in a well traceable coaxial setup. KW - MUT measurement; scanner KW - transponder KW - SFCW KW - harmonic radar KW - nonlinear radar Y1 - 2021 U6 - https://doi.org/10.3390/rs13245088 SN - 2072-4292 N1 - This article belongs to the Special Issue "Nonlinear Junction Detection and Harmonic Radar" VL - 13 IS - 24 PB - MDPI CY - Basel ER - TY - CHAP A1 - Heuermann, Holger A1 - Harzheim, Thomas A1 - Mühmel, Marc T1 - A maritime harmonic radar search and rescue system using passive and active tags T2 - 2020 17th European Radar Conference (EuRAD) N2 - This article introduces a new maritime search and rescue system based on S-band illumination harmonic radar (HR). Passive and active tags have been developed and tested attached to life jackets and a rescue boat. This system was able to detect and range the active tags up to a range of 5800 m in tests on the Baltic Sea with an antenna input power of only 100 W. All electronic GHz components of the system, excluding the S-band power amplifier, were custom developed for this purpose. Special attention is given to the performance and conceptual differences between passive and active tags used in the system and integration with a maritime X-band navigation radar is demonstrated. KW - Harmonic Radar KW - Rescue System KW - Frequency Doubler KW - Transponder KW - Tag Y1 - 2021 SN - 978-2-87487-061-3 U6 - https://doi.org/10.1109/EuRAD48048.2021.00030 N1 - 17th European Radar Conference, 13th - 15th January 2021, Utrecht, Netherlands SP - 73 EP - 76 PB - IEEE CY - New York, NY ER - TY - CHAP A1 - Hoegen, Anne von A1 - Doncker, Rik W. De A1 - Bragard, Michael A1 - Hoegen, Svenja von T1 - Problem-based learning in automation engineering: performing a remote laboratory aession aerving various educational attainments T2 - 2021 IEEE Global Engineering Education Conference (EDUCON) N2 - During the Covid-19 pandemic, vocational colleges, universities of applied science and technical universities often had to cancel laboratory sessions requiring students’ attendance. These above of all are of decisive importance in order to give learners an understanding of theory through practical work.This paper is a contribution to the implementation of distance learning for laboratory work applicable for several upper secondary educational facilities. Its aim is to provide a paradigm for hybrid teaching to analyze and control a non-linear system depicted by a tank model. For this reason, we redesign a full series of laboratory sessions on the basis of various challenges. Thus, it is suitable to serve different reference levels of the European Qualifications Framework (EQF).We present problem-based learning through online platforms to compensate the lack of a laboratory learning environment. With a task deduced from their future profession, we give students the opportunity to develop own solutions in self-defined time intervals. A requirements specification provides the framework conditions in terms of time and content for students having to deal with the challenges of the project in a self-organized manner with regard to inhomogeneous previous knowledge. If the concept of Complete Action is introduced in classes before, they will automatically apply it while executing the project.The goal is to combine students’ scientific understanding with a procedural knowledge. We suggest a series of remote laboratory sessions that combine a problem formulation from the subject area of Measurement, Control and Automation Technology with a project assignment that is common in industry by providing extracts from a requirements specification. Y1 - 2021 U6 - https://doi.org/10.1109/EDUCON46332.2021.9453925 N1 - 2021 IEEE Global Engineering Education Conference (EDUCON), 21-23 April 2021, Vienna, Austria SP - 1605 EP - 1614 PB - IEEE CY - New York, NY ER - TY - CHAP A1 - Hoffschmidt, Bernhard A1 - Alexopoulos, Spiros A1 - Rau, Christoph A1 - Sattler, Johannes Christoph A1 - Anthrakidis, Anette A1 - Teixeira Boura, Cristiano José A1 - O’Connor, B. A1 - Chico Caminos, Ricardo Alexander A1 - Rendón, C. A1 - Hilger, P. T1 - Concentrating Solar Power T2 - Earth systems and environmental sciences N2 - The focus of this chapter is the production of power and the use of the heat produced from concentrated solar thermal power (CSP) systems. The chapter starts with the general theoretical principles of concentrating systems including the description of the concentration ratio, the energy and mass balance. The power conversion systems is the main part where solar-only operation and the increase in operational hours. Solar-only operation include the use of steam turbines, gas turbines, organic Rankine cycles and solar dishes. The operational hours can be increased with hybridization and with storage. Another important topic is the cogeneration where solar cooling, desalination and of heat usage is described. Many examples of commercial CSP power plants as well as research facilities from the past as well as current installed and in operation are described in detail. The chapter closes with economic and environmental aspects and with the future potential of the development of CSP around the world. KW - Central receiver power plant KW - Concentrated systems KW - Concentrating solar power KW - Fresnel power plant KW - Gas turbine Y1 - 2021 SN - 978-0-12-409548-9 U6 - https://doi.org/10.1016/B978-0-12-819727-1.00089-3 PB - Elsevier CY - Amsterdam ER - TY - CHAP A1 - Horikawa, Atsushi A1 - Okada, Kunio A1 - Yamaguchi, Masato A1 - Aoki, Shigeki A1 - Wirsum, Manfred A1 - Funke, Harald A1 - Kusterer, Karsten T1 - Combustor development and engine demonstration of micro-mix hydrogen combustion applied to M1A-17 gas turbine T2 - Conference Proceedings Turbo Expo: Power for Land, Sea and Air, Volume 3B: Combustion, Fuels, and Emissions N2 - Kawasaki Heavy Industries, LTD. (KHI) has research and development projects for a future hydrogen society. These projects comprise the complete hydrogen cycle, including the production of hydrogen gas, the refinement and liquefaction for transportation and storage, and finally the utilization in a gas turbine for electricity and heat supply. Within the development of the hydrogen gas turbine, the key technology is stable and low NOx hydrogen combustion, namely the Dry Low NOx (DLN) hydrogen combustion. KHI, Aachen University of Applied Science, and B&B-AGEMA have investigated the possibility of low NOx micro-mix hydrogen combustion and its application to an industrial gas turbine combustor. From 2014 to 2018, KHI developed a DLN hydrogen combustor for a 2MW class industrial gas turbine with the micro-mix technology. Thereby, the ignition performance, the flame stability for equivalent rotational speed, and higher load conditions were investigated. NOx emission values were kept about half of the Air Pollution Control Law in Japan: 84ppm (O2-15%). Hereby, the elementary combustor development was completed. From May 2020, KHI started the engine demonstration operation by using an M1A-17 gas turbine with a co-generation system located in the hydrogen-fueled power generation plant in Kobe City, Japan. During the first engine demonstration tests, adjustments of engine starting and load control with fuel staging were investigated. On 21st May, the electrical power output reached 1,635 kW, which corresponds to 100% load (ambient temperature 20 °C), and thereby NOx emissions of 65 ppm (O2-15, 60 RH%) were verified. Here, for the first time, a DLN hydrogen-fueled gas turbine successfully generated power and heat. KW - industrial gas turbine KW - combustor development KW - engine demonstration KW - fuels KW - hydrogen Y1 - 2021 U6 - https://doi.org/10.1115/GT2021-59666 N1 - ASME Turbo Expo 2021: Turbomachinery Technical Conference and Exposition. June 7–11, 2021. Virtual, Online. Paper No: GT2021-59666, V03BT04A014 ER - TY - JOUR A1 - Hugenroth, Kristin A1 - Borchardt, Ralf A1 - Ritter, Philine A1 - Groß‑Hardt, Sascha A1 - Meyns, Bart A1 - Verbelen, Tom A1 - Steinseifer, Ulrich A1 - Kaufmann, Tim A. S. A1 - Engelmann, Ulrich M. T1 - Optimizing cerebral perfusion and hemodynamics during cardiopulmonary bypass through cannula design combining in silico, in vitro and in vivo input JF - Scientific Reports N2 - Cardiopulmonary bypass (CPB) is a standard technique for cardiac surgery, but comes with the risk of severe neurological complications (e.g. stroke) caused by embolisms and/or reduced cerebral perfusion. We report on an aortic cannula prototype design (optiCAN) with helical outflow and jet-splitting dispersion tip that could reduce the risk of embolic events and restores cerebral perfusion to 97.5% of physiological flow during CPB in vivo, whereas a commercial curved-tip cannula yields 74.6%. In further in vitro comparison, pressure loss and hemolysis parameters of optiCAN remain unaffected. Results are reproducibly confirmed in silico for an exemplary human aortic anatomy via computational fluid dynamics (CFD) simulations. Based on CFD simulations, we firstly show that optiCAN design improves aortic root washout, which reduces the risk of thromboembolism. Secondly, we identify regions of the aortic intima with increased risk of plaque release by correlating areas of enhanced plaque growth and high wall shear stresses (WSS). From this we propose another easy-to-manufacture cannula design (opti2CAN) that decreases areas burdened by high WSS, while preserving physiological cerebral flow and favorable hemodynamics. With this novel cannula design, we propose a cannulation option to reduce neurological complications and the prevalence of stroke in high-risk patients after CPB. Y1 - 2021 U6 - https://doi.org/10.1038/s41598-021-96397-2 SN - 2045-2322 VL - 11 IS - Art. No. 16800 SP - 1 EP - 12 PB - Springer CY - Berlin ER - TY - JOUR A1 - Hugenroth, Kristin A1 - Neidlin, Michael A1 - Engelmann, Ulrich M. A1 - Kaufmann, Tim A. S. A1 - Steinseifer, Ulrich A1 - Heilmann, Torsten T1 - Tipless Transseptal Cannula Concept Combines Improved Hemodynamic Properties and Risk‐Reduced Placement: an In Silico Proof‐of‐Concept JF - Artificial Organs Y1 - 2021 U6 - https://doi.org/10.1111/aor.13964 SN - 1525-1594 IS - Accepted Article PB - Wiley CY - Weinheim ER - TY - JOUR A1 - Hunker, Jan L. A1 - Gossmann, Matthias A1 - Raman, Aravind Hariharan A1 - Linder, Peter T1 - Artificial neural networks in cardiac safety assessment: Classification of chemotherapeutic compound effects on hiPSC-derived cardiomyocyte contractility JF - Journal of Pharmacological and Toxicological Methods Y1 - 2021 U6 - https://doi.org/10.1016/j.vascn.2021.107044 SN - 1056-8719 VL - 111 IS - Article number 107044 PB - Elsevier CY - New York ER - TY - CHAP A1 - Hüning, Felix T1 - Sustainable changes beyond covid-19 for a second semester physics course for electrical engineering students T2 - Blended Learning in Engineering Education: challenging, enlightening – and lasting? N2 - The course Physics for Electrical Engineering is part of the curriculum of the bachelor program Electrical Engineering at University of Applied Science Aachen. Before covid-19 the course was conducted in a rather traditional way with all parts (lecture, exercise and lab) face-to-face. This teaching approach changed fundamentally within a week when the covid-19 limitations forced all courses to distance learning. All parts of the course were transformed to pure distance learning including synchronous and asynchronous parts for the lecture, live online-sessions for the exercises and self-paced labs at home. Using these methods, the course was able to impart the required knowledge and competencies. Taking the teacher’s observations of the student’s learning behaviour and engagement, the formal and informal feedback of the students and the results of the exams into account, the new methods are evaluated with respect to effectiveness, sustainability and suitability for competence transfer. Based on this analysis strong and weak points of the concept and countermeasures to solve the weak points were identified. The analysis further leads to a sustainable teaching approach combining synchronous and asynchronous parts with self-paced learning times that can be used in a very flexible manner for different learning scenarios, pure online, hybrid (mixture of online and presence times) and pure presence teaching. Y1 - 2021 SN - 978-2-87352-023-6 N1 - SEFI 49th Annual Conference, Technische Universität Berlin (online), 13 – 16 September 2021 SP - 1424 EP - 1428 ER - TY - CHAP A1 - Hüning, Felix A1 - Stüttgen, Marcel T1 - Work in Progress: Interdisciplinary projects in times of COVID-19 crisis – challenges, risks and chances T2 - 2021 IEEE Global Engineering Education Conference (EDUCON) N2 - Project work and inter disciplinarity are integral parts of today's engineering work. It is therefore important to incorporate these aspects into the curriculum of academic studies of engineering. At the faculty of Electrical Engineering and Information Technology an interdisciplinary project is part of the bachelor program to address these topics. Since the summer term 2020 most courses changed to online mode during the Covid-19 crisis including the interdisciplinary projects. This online mode introduces additional challenges to the execution of the projects, both for the students as well as for the lecture. The challenges, but also the risks and chances of this kind of project courses are subject of this paper, based on five different interdisciplinary projects Y1 - 2021 U6 - https://doi.org/10.1109/EDUCON46332.2021.9454006 N1 - 2021 IEEE Global Engineering Education Conference (EDUCON), 21-23 April 2021, Vienna, Austria SP - 1175 EP - 1179 PB - IEEE CY - New York, NY ER -