TY - CHAP A1 - Moreno, Lia A1 - Dosev, D. A1 - Bratov, A. A1 - Dominguez, C. A1 - Schöning, Michael Josef A1 - Kloock, Joachim P. T1 - Effect of electrical properties of the surrounding medium on the response of an interdigitated electrode array with chalcogenide glass film T2 - XX Eurosensors : 20th anniversary ; Göteborg, Sweden, 17 - 20 September 2006 ; [proceedings]. - Vol. 1 Y1 - 2006 SN - 978-91-631-9280-7 N1 - Paper number: T1A-P22 SP - 384 EP - 385 CY - Göteborg ER - TY - JOUR A1 - Engelmann, Ulrich M. A1 - Simsek, Beril A1 - Shalaby, Ahmed A1 - Krause, Hans-Joachim T1 - Key contributors to signal generation in frequency mixing magnetic detection (FMMD): an in silico study JF - Sensors N2 - Frequency mixing magnetic detection (FMMD) is a sensitive and selective technique to detect magnetic nanoparticles (MNPs) serving as probes for binding biological targets. Its principle relies on the nonlinear magnetic relaxation dynamics of a particle ensemble interacting with a dual frequency external magnetic field. In order to increase its sensitivity, lower its limit of detection and overall improve its applicability in biosensing, matching combinations of external field parameters and internal particle properties are being sought to advance FMMD. In this study, we systematically probe the aforementioned interaction with coupled Néel–Brownian dynamic relaxation simulations to examine how key MNP properties as well as applied field parameters affect the frequency mixing signal generation. It is found that the core size of MNPs dominates their nonlinear magnetic response, with the strongest contributions from the largest particles. The drive field amplitude dominates the shape of the field-dependent response, whereas effective anisotropy and hydrodynamic size of the particles only weakly influence the signal generation in FMMD. For tailoring the MNP properties and parameters of the setup towards optimal FMMD signal generation, our findings suggest choosing large particles of core sizes dc > 25 nm nm with narrow size distributions (σ < 0.1) to minimize the required drive field amplitude. This allows potential improvements of FMMD as a stand-alone application, as well as advances in magnetic particle imaging, hyperthermia and magnetic immunoassays. KW - key performance indicators KW - magnetic biosensing KW - coupled Néel–Brownian relaxation dynamics KW - frequency mixing magnetic detection KW - magnetic relaxation KW - micromagnetic simulation KW - magnetic nanoparticles Y1 - 2024 U6 - https://doi.org/10.3390/s24061945 SN - 1424-8220 N1 - This article belongs to the Special Issue "Advances in Magnetic Sensors and Their Applications" VL - 24 IS - 6 PB - MDPI CY - Basel ER - TY - JOUR A1 - Vahidpour, Farnoosh A1 - Alghazali, Yousef A1 - Akca, Sevilay A1 - Hommes, Gregor A1 - Schöning, Michael Josef T1 - An Enzyme-Based Interdigitated Electrode-Type Biosensor for Detecting Low Concentrations of H₂O₂ Vapor/Aerosol JF - Chemosensors N2 - This work introduces a novel method for the detection of H₂O₂ vapor/aerosol of low concentrations, which is mainly applied in the sterilization of equipment in medical industry. Interdigitated electrode (IDE) structures have been fabricated by means of microfabrication techniques. A differential setup of IDEs was prepared, containing an active sensor element (active IDE) and a passive sensor element (passive IDE), where the former was immobilized with an enzymatic membrane of horseradish peroxidase that is selective towards H₂O₂. Changes in the IDEs’ capacitance values (active sensor element versus passive sensor element) under H₂O₂ vapor/aerosol atmosphere proved the detection in the concentration range up to 630 ppm with a fast response time (<60 s). The influence of relative humidity was also tested with regard to the sensor signal, showing no cross-sensitivity. The repeatability assessment of the IDE biosensors confirmed their stable capacitive signal in eight subsequent cycles of exposure to H₂O₂ vapor/aerosol. Room-temperature detection of H₂O₂ vapor/aerosol with such miniaturized biosensors will allow a future three-dimensional, flexible mapping of aseptic chambers and help to evaluate sterilization assurance in medical industry. Y1 - 2022 U6 - https://doi.org/10.3390/chemosensors10060202 SN - 2227-9040 N1 - This article belongs to the Special Issue "Bioinspired Chemical Sensors and Micro-Nano Devices" VL - 10 IS - 6 PB - MDPI CY - Basel ER -