TY - JOUR A1 - Streun, M. A1 - Larue, H. A1 - Parl, C. A1 - Ziemons, Karl T1 - A compact PET detector readout using charge-to-time conversion JF - 2009 IEEE Nuclear Science Symposium Conference Record (NSS/MIC) N2 - The readout of gamma detectors is considerably simplified when the event intensity is encoded as a pulse width (Pulse Width Modulation, PWM). Time-to-Digital-Converters (TDC) replace the conventional ADCs and multiple TDCs can be realized easily in one PLD chip (Programmable Logic Device). The output of a PWM stage is only one digital signal per channel which is well suited for transport so that further processing can be performed apart from the detector. This is particularly interesting for large systems with high channel density (e.g. high resolution scanners). In this work we present a circuit with a linear transfer function that requires a minimum of components by performing the PWM already in the preamp stage. This allows a very compact and also cost-efficient implementation of the front-end electronics. Y1 - 2009 SN - 1082-3654 SP - 1868 EP - 1870 PB - IEEE CY - New York ER - TY - JOUR A1 - Streun, M. A1 - Brandenburg, G. A1 - Larue, H. A1 - Zimmermann, E. A1 - Ziemons, Karl A1 - Halling, H. T1 - Pulse recording by free-running sampling JF - IEEE Transactions on Nuclear Science N2 - Pulses from a position-sensitive photomultiplier (PS-PMT) are recorded by free-running ADCs at a sampling rate of 40 MHz. A four-channel acquisition board has been developed which is equipped with four 12-bit ADCs connected to one field programmable gate array (FPGA). The FPGA manages data acquisition and the transfer to the host computer. It can also work as a digital trigger, so a separate hardware trigger can be omitted. The method of free-running sampling provides a maximum of information, besides the pulse charge and amplitude also pulse shape and starting time are contained in the sampled data. This information is crucial for many tasks such as distinguishing between different scintillator materials, determination of radiation type, pile-up recovery, coincidence detection or time-of-flight applications. The absence of an analog integrator allows very high count rates to be dealt with. Since this method is to be employed in positron emission tomography (PET), the position of an event is also important. The simultaneous readout of four channels allows localization by means of center-of-gravity weighting. First results from a test setup with LSO scintillators coupled to the PS-PMT are presented here Y1 - 2001 SN - 0018-9499 VL - 48 IS - 3 SP - 524 EP - 526 ER - TY - JOUR A1 - Heinrich, U. A1 - Blum, A. A1 - Bussmann, N. A1 - Engels, R. A1 - Kemmerling, G. A1 - Weber, S. A1 - Ziemons, Karl T1 - Statistical studies on the light output and energy resolution of small LSO single crystals with different surface treatments combined with various reflector materials JF - Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment N2 - The optimization of light output and energy resolution of scintillators is of special interest for the development of high resolution and high sensitivity PET. The aim of this work is to obtain statistically reliable results concerning optimal surface treatment of scintillation crystals and the selection of reflector material. For this purpose, raw, mechanically polished and etched LSO crystals (size 2×2×10 mm3) were combined with various reflector materials (Teflon tape, Teflon matrix, BaSO4) and exposed to a 22Na source. In order to ensure the statistical reliability of the results, groups of 10 LSO crystals each were measured for all combinations of surface treatment and reflector material. Using no reflector material the light output increased up to 551±35% by mechanical polishing the surface compared to 100±5% for raw crystals. Etching the surface increased the light output to 441±29%. The untreated crystals had an energy resolution of 24.6±4.0%. By mechanical polishing the surface it was possible to achieve an energy resolution of 13.2±0.8%, by etching of 14.8±0.7%. In combination with BaSO4 as reflector material the maximum increase of light output has been established to 932±57% for mechanically polished and 895±61% for etched crystals. The combination with BaSO4 also caused the best improvement of the energy resolution up to 11.6±0.2% for mechanically polished and 12.2±0.3% for etched crystals. Relating to the light output there was no significant statistical difference between the two surface treatments in combination with BaSO4. In contrast to this, the statistical results of the energy resolution have shown the combination of mechanical polishing and BaSO4 as the optimum. Y1 - 2002 SN - 0168-9002 N1 - Proceedings of the 6th International Conference on Inorganic Scin tillators and their Use in Scientific and Industrial Applications VL - 486 IS - 1-2 SP - 60 EP - 66 ER - TY - JOUR A1 - Streun, M. A1 - Brandenburg, G. A1 - Larue, H. A1 - Zimmermann, E. A1 - Ziemons, Karl A1 - Halling, H. T1 - A PET system with free running ADCs JF - Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment N2 - A small PET system has been built up with two multichannel photomultipliers, which are attached to a matrix of 64 single LSO crystals each. The signal from each multiplier is being sampled continuously by a 12 bit ADC at a sampling frequency of 40 MHz. In case of a scintillation pulse a subsequent FPGA sends the corresponding set of samples together with the channel information and a time mark to the host computer. The data transfer is performed with a rate of 20 MB/s. On the host all necessary information is extracted from the data. The pulse energy is determined, coincident events are detected and multiple hits within one matrix can be identified. In order to achieve a narrow time window the pulse starting time is refined further than the resolution of the time mark (=25 ns) would allow. This is possible by interpolating between the pulse samples. First data obtained from this system will be presented. The system is part of developments for a much larger system and has been created to study the feasibility and performance of the technique and the hardware architecture. Y1 - 2002 SN - 0168-9002 N1 - Proceedings of the 6th International Conference on Inorganic Scin tillators and their Use in Scientific and Industrial Applications VL - 486 IS - 1-2 SP - 18 EP - 21 ER - TY - JOUR A1 - Streun, M. A1 - Brandenburg, G. A1 - Larue, H. A1 - Zimmermann, E. A1 - Ziemons, Karl A1 - Halling, H. T1 - Coincidence detection by digital processing of free-running sampled pulses JF - Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment N2 - Coincident events in two scintillator crystals coupled to photomultipliers (PMT) are detected by processing just the digital data of the recorded pulses. For this purpose the signals from both PMTs are continuously sampled by free-running ADCs at a sampling rate of 40 MHz. For each sampled pulse the starting time is determined by processing the pulse data. Even a fairly simple interpolating algorithm results in a FWHM of about 2 ns. Y1 - 2002 SN - 0168-9002 VL - 487 IS - 3 SP - 530 EP - 534 ER - TY - JOUR A1 - Khodaverdi, M. A1 - Pauly, F. A1 - Schroder, G. A1 - Ziemons, Karl A1 - Sievering, R. A1 - Halling, H. T1 - Preliminary studies of a micro-CT for a combined small animal PET/CT scanner JF - 2001 IEEE Nuclear Science Symposium Conference Record, Vol. 3 N2 - We are developing an X-ray computed tomography (CT) system which will be combined with a high resolution animal PET system. This permits acquisition of both molecular and anatomical images in a single machine. In particular the CT will also be utilized for the quantification of the animal PET data by providing accurate data for attenuation correction. A first prototype has been built using a commercially available plane silicon diode detector. A cone-beam reconstruction provides the images using the Feldkamp algorithm. First measurements with this system have been performed on a mouse. It could be shown that the CT setup fulfils all demands for a high quality image of the skeleton of the mouse. It is also suited for soft tissue measurements. To improve contrast and resolution and to acquire the X-ray energy further development of the system, especially the use of semiconductor detectors and iterative reconstruction algorithms are planned. Y1 - 2002 SN - 1082-3654 SP - 1605 EP - 1606 ER - TY - JOUR A1 - Streun, M. A1 - Brandenburg, G. A1 - Larue, H. A1 - Zimmermann, E. A1 - Ziemons, Karl A1 - Halling, H. T1 - A PET system based on data processing of free-running sampled pulses JF - 2001 IEEE Nuclear Science Symposium Conference Record, Vol. 2 N2 - Within the developments for the Crystal Clear small animal PET project (CLEARPET) a dual head PET system has been established. The basic principle is the early digitization of the detector pulses by free running ADCs. The determination of the γ-energy and also the coincidence detection is performed by data processing of the sampled pulses on the host computer. Therefore a time mark is attached to each pulse identifying the current cycle of the 40 MHz sampling clock. In order to refine the time resolution the pulse starting time is interpolated from the samples of the pulse rise. The detector heads consist of multichannel PMTs with a single LSO scintillator crystal coupled to each channel. For each PMT only one ADC is required. The position of an event is obtained separately from trigger signals generated for each single channel. An FPGA is utilized for pulse buffering, generation of the time mark and for the data transfer to the host via a fast I/O-interface. Y1 - 2002 SN - 1082-3654 SP - 693 EP - 694 ER - TY - JOUR A1 - Heinrichs, U. A1 - Pietrzyk, U. A1 - Ziemons, Karl T1 - Design optimization of the PMT-ClearPET prototypes based on simulation studies with GEANT3 JF - 2002 IEEE Nuclear Science Symposium Conference Record, Vol. 3 N2 - Within the Crystal Clear Collaboration four centres are developing 2nd generation high performance small animal PET scanners for different kinds of animals and medical applications. The first prototypes are PMT-based systems including depth of interaction (DOI) detection by using a phoswich layer of LSO and LuYAP. The aim of these simulation studies is to optimize sensitivity and spatial resolution of given designs, which vary in FOVs caused by different detector configurations (ring/octagon) and sizes. For this purpose the simulation tool GEANT3 (CERN) was used. The simulations have shown that all PMT designs with one-to-one coupling of crystals have a very nonlinear axial sensitivity profile. By shifting every other PMT 1/4 of a PMT length in axial direction the sampling of the FOVs became more homogeneous. At an energy threshold of 350keV the regression coefficient increases from 0.818 for the non-shifted to 0.993 for the shifted design. Simulations of a point source centred in the FOV (threshold: 350keV) resulted in sensitivities of 4.2% for a 4×20PMT (LSO/LuYAP a 10mm) and 3.8% for a 4×16PMT (LSO/LuYAP a 8mm) ring design. The 3D-MLEM reconstruction of a point source shows the enormous improvement of resolution using a crystal double layer with DOI (3.1mm at 40mm from CFOV) instead of a 20mm single layer (11.9mm). Y1 - 2003 SN - 1082-3654 SP - 682 EP - 686 ER - TY - JOUR A1 - Heinrichs, U. A1 - Pietrzyk, U. A1 - Ziemons, Karl T1 - Design optimization of the PMT-ClearPET prototypes based on simulation studies with GEANT3 JF - IEEE Transactions on Nuclear Science N2 - Within the Crystal Clear Collaboration (CCC), four centers are developing second generation high performance small animal positron emission tomography (PET) scanners for different kinds of animals and medical applications. The first prototypes are photomultiplier tube (PMT)-based systems including depth of interaction (DOI) detection by using a phoswich layer of lutetium oxyorthosilicate (LSO) and lutetium yttrium aluminum perovskite (LuYAP). The aim of these simulation studies is to optimize sensitivity and spatial resolution of given designs, which vary in fields of view (FOVs) caused by different detector configurations (ring/octagon) and sizes. For this purpose the simulation tool GEANT3 (CERN, Geneva, Switzerland) was used. Y1 - 2003 SN - 0018-9499 VL - 50 IS - 5 SP - 1428 EP - 1432 ER - TY - JOUR A1 - Streun, M. A1 - Brandenburg, G. A1 - Larue, H. A1 - Saleh, H. A1 - Zimmermann, E. A1 - Ziemons, Karl A1 - Halling, H. T1 - Pulse shape discrimination of LSO and LuYAP scintillators for depth of interaction detection in PET JF - 2002 IEEE Nuclear Science Symposium Conference Record, Vol. 3 N2 - A feasible way to gain the depth of interaction information in a PET scanner is the use of phoswich detectors. In general the layer of interaction is identified front the pulse shape of the corresponding scintillator material. In this work pulses from LSO and LuYAP crystals were investigated in order to find a practical method of distinguishing. It turned out that such a pulse processing could he kept simple due to an additional slow component in the light decay of the LuYAP pulse. At the same time the short decay time guarantees that the major amount of the light output is still collected within a short pulse recording time. Y1 - 2003 SN - 1082-3654 SP - 1636 EP - 1639 ER - TY - JOUR A1 - Streun, M. A1 - Brandenburg, G. A1 - Larue, H. A1 - Saleh, H. A1 - Zimmermann, E. A1 - Ziemons, Karl A1 - Halling, H. T1 - Pulse shape discrimination of LSO and LuYAP scintillators for depth of interaction detection in PET JF - IEEE Transactions on Nuclear Science N2 - A feasible way to gain the depth of interaction information in a positron emission tomography scanner is the use of phoswich detectors. In general, the layer of interaction is identified from the pulse shape of the corresponding scintillator material. In this work, pulses from LSO and LuYAP crystals were investigated in order to find a practical method of distinguishing. It turned out that such a pulse processing could be kept simple because of an additional slow component in the light decay of the LuYAP pulse. At the same time, the short decay time guarantees that the major amount of the light output is still collected within a short pulse recording time. Y1 - 2003 SN - 0018-9499 VL - 50 IS - 3 SP - 344 EP - 347 ER - TY - JOUR A1 - Khodaverdi, M. A1 - Chaziioannou, A. F. A1 - Weber, S. A1 - Ziemons, Karl A1 - Halling, H. A1 - Pietrzyk, U. T1 - Investigation of different microCT scanner configurations by GEANT4 simulations JF - 2003 IEEE Nuclear Science Symposium Conference Record, Vol. 4 N2 - This study has been performed to design the combination of the new ClearPET TM (ClearPET is a trademark of the Crystal Clear Collaboration), a small animal Positron Emission Tomography (PET) system, with a microComputed Tomography (microCT) scanner. The properties of different microCT systems have been determined by simulations based on GEANT4. We demonstrate the influence of the detector material and the X-ray spectrum on the obtained contrast. Four different detector materials (selenium, cadmium zinc telluride, cesium iodide and gadolinium oxysulfide) and two X-ray spectra (a molybdenum and a tungsten source) have been considered. The spectra have also been modified by aluminum filters of varying thickness. The contrast between different tissue types (water, air, brain, bone and fat) has been simulated by using a suitable phantom. The results indicate the possibility to improve the image contrast in microCT by an optimized combination of the X-ray source and detector material. Y1 - 2004 SN - 1082-3654 SP - 2989 EP - 2993 ER - TY - JOUR A1 - Streun, M. A1 - Brandenburg, G. A1 - Brökel, M. A1 - Fuss, L. A1 - Larue, H. A1 - Parl, C. A1 - Zimmermann, E. A1 - Ziemons, Karl A1 - Halling, H. T1 - The ClearPET data acquisition JF - 2003 IEEE Nuclear Science Symposium Conference Record, Vol. 5 N2 - Within the Crystal Clear Collaboration a modular system for a small animal PET scanner (ClearPET™) has been developed. The modularity allows the assembly of scanners of different sizes and characteristics in order to fit the specific needs of the individual member institutions. Now a first demonstrator is being completed in Julich. The system performs depth of interaction detection by using a phoswich arrangement combining LSO and LuYAP scintillators which are coupled to multi-channel photomultipliers (PMTs). A free-running ADC digitizes the signal from the PMT and the complete scintillation pulses are sampled by an FPGA and sent with 20 MB/S to a PC for preprocessing. The pulse provides information about the gamma energy and the scintillator material which identifies the interaction layer. Furthermore, the exact pulse starting time is obtained from the sampled data. This is important as no hardware coincidence detection is implemented. All single events are recorded and coincidences are identified by software. An advantage of that is that the coincidence window and the dimensions of the field of view can be adjusted easily. The ClearPET™ demonstrator is equipped with 10240 crystals on 80 PMTs. This paper presents an overview of the data acquisition system. Y1 - 2004 SN - 1082-3654 SP - 3097 EP - 3100 ER - TY - JOUR A1 - Christ, D. A1 - Hollendung, A. A1 - Larue, H. A1 - Parl, C. A1 - Streun, M. A1 - Weber, S. A1 - Ziemons, Karl A1 - Halling, H. T1 - Homogenization of the MultiChannel PM gain by inserting light attenuating masks JF - 2003 IEEE Nuclear Science Symposium Conference Record, Vol. 4 N2 - MultiChannel Photomultipliers (PM), like the R7600-00-M64 or R5900-00-M64 from Hamamatsu, are often chosen as photodetectors in high-resolution positron emission tomography (PET). A major problem of this PM is the nonuniform channel gain. In order to solve this problem, light attenuating masks were created. The aim of the masks is a homogenization of the output of all 64 channels using different hole sizes at the channel positions. The hole area, which is individually defined for the different channels, is inversely proportional to the channel gain. The measurements by inserting light attenuating masks improved a homogenization to a ratio of 1:1.2. Y1 - 2004 SN - 1082-3654 SP - 2382 EP - 2385 ER - TY - JOUR A1 - Ziemons, Karl A1 - Heinrichs, U. A1 - Streun, M. A1 - Pietrzyk, U. T1 - Validation of GEANT3 simulation studies with a dual-head PMT ClearPET™ prototype JF - 2003 IEEE Nuclear Science Symposium Conference Record, Vol. 5 N2 - The ClearPET™ project is proposed by working groups of the Crystal Clear Collaboration (CCC) to develop a 2nd generation high performance small animal positron emission tomograph (PET). High sensitivity and high spatial resolution is foreseen for the ClearPET™ camera by using a phoswich arrangement combining mixed lutetium yttrium aluminum perovskite (LuYAP:Ce) and lutetium oxyorthosilicate (LSO) scintillating crystals. Design optimizations for the first photomultiplier tube (PMT) based ClearPET camera are done with a Monte-Carlo simulation package implemented on GEANT3 (CERN, Geneva, Switzerland). A dual-head prototype has been built to test the frontend electronics and was used to validate the implementation of the GEANT3 simulation tool. Multiple simulations were performed following the experimental protocols to measure the intrinsic resolution and the sensitivity profile in axial and radial direction. Including a mean energy resolution of about 27.0% the simulated intrinsic resolution is about (1.41±0.11)mm compared to the measured of (1.48±0.06)mm. The simulated sensitivity profiles show a mean square deviation of 12.6% in axial direction and 3.6% in radial direction. Satisfactorily these results are representative for all designs and confirm the scanner geometry. Y1 - 2004 SN - 1082-3654 SP - 3053 EP - 3056 ER - TY - JOUR A1 - Streun, M. A1 - Christ, D. A1 - Hellendung, A. A1 - Larue, H. A1 - Ziemons, Karl A1 - Halling, H. T1 - Effects of crosstalk and gain nonuniformity using multichannel PMTs in the Clearpet® scanner JF - Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment N2 - The ClearPET® scanners developed by the Crystal Clear Collaboration use multichannel PMTs as photodetectors with scintillator pixels coupled individually to each channel. In order to localize an event each channel anode is connected to a comparator that triggers when the anode signal exceeds a common predefined threshold. Two major difficulties here are crosstalk of light and the gain nonuniformity of the PMT channels. Crosstalk can generate false triggering in channels adjacent to the actual event. On the one hand this can be suppressed by sufficiently increasing the threshold, but on the other hand a threshold too high can already prevent valid events on the lower gain channels from being detected. Finally, both effects restrict the dynamic range of pulse heights that can be processed. The requirements to the dynamic range are not low as the ClearPET® scanners detect the depth of interaction by phoswich pixels consisting of LSO and Lu0.7Y0.3AP, two scintillators with different light yields. We will present a model to estimate the achievable dynamic range and show solutions to increase it. Y1 - 2005 SN - 0168-9002 N1 - Proceedings of the 7th International Conference on Inorganic Scintillators and their Use in Scientific and Industrial Applications VL - 537 IS - 1-2 SP - 402 EP - 405 ER - TY - JOUR A1 - Beer, S. A1 - Streun, M. A1 - Hombach, T. A1 - Buehler, J. A1 - Jahnke, S. A1 - Khodaverdi, M. A1 - Larue, H. A1 - Minwuyelet, S. A1 - Parl, C. A1 - Roeb, G. A1 - Schurr, U. A1 - Ziemons, Karl T1 - Design and initial performance of PlanTIS: a high-resolution positron emission tomograph for plants JF - Physics in Medicine and Biology N2 - Positron emitters such as 11C, 13N and 18F and their labelled compounds are widely used in clinical diagnosis and animal studies, but can also be used to study metabolic and physiological functions in plants dynamically and in vivo. A very particular tracer molecule is 11CO2 since it can be applied to a leaf as a gas. We have developed a Plant Tomographic Imaging System (PlanTIS), a high-resolution PET scanner for plant studies. Detectors, front-end electronics and data acquisition architecture of the scanner are based on the ClearPET™ system. The detectors consist of LSO and LuYAP crystals in phoswich configuration which are coupled to position-sensitive photomultiplier tubes. Signals are continuously sampled by free running ADCs, and data are stored in a list mode format. The detectors are arranged in a horizontal plane to allow the plants to be measured in the natural upright position. Two groups of four detector modules stand face-to-face and rotate around the field-of-view. This special system geometry requires dedicated image reconstruction and normalization procedures. We present the initial performance of the detector system and first phantom and plant measurements. Y1 - 2010 U6 - https://doi.org/10.1088/0031-9155/55/3/006 SN - 1361-6560 VL - 55 IS - 3 SP - 635 EP - 646 PB - IOP CY - Bristol ER - TY - JOUR A1 - Herzog, Hans A1 - Pietrzyk, Uwe A1 - Shah, N. Jon A1 - Ziemons, Karl T1 - The current state, challenges and perspectives of MR-PET JF - Neuroimage N2 - Following the success of PET/CT during the last decade and the recent increasing proliferation of SPECT/CT, another hybrid imaging instrument has been gaining more and more interest: MR-PET. First combined, simultaneous PET and MR studies carried out in small animals demonstrated the feasibility of the new approach. Concurrently, some prototypes of an MR-PET scanner for simultaneous human brain studies have been built, their performance is being tested and preliminary applications have already been shown. Through this pioneering work, it has become clear that advances in the detector design are necessary for further optimization. Recently, the different issues related to the present state and future prospects of MR-PET were presented and discussed during an international 2-day workshop at the Forschungszentrum Jülich, Germany, held after, and in conjunction with, the 2008 IEEE Nuclear Science Symposium and Medical Imaging Conference in Dresden, Germany on October 27–28, 2008. The topics ranged from small animal MR-PET imaging to human MR-BrainPET imaging, new detector developments, challenges/opportunities for ultra-high field MR-PET imaging and considerations of possible future research and clinical applications. This report presents a critical summary of the contributions made to the workshop. Y1 - 2010 U6 - https://doi.org/10.1016/j.neuroimage.2009.10.036 SN - 1053-8119 VL - 49 IS - 3 SP - 2072 EP - 2082 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Parl, C. A1 - Larue, H. A1 - Streun, M. A1 - Ziemons, Karl T1 - Double-side-readout technique for SiPM-matrices JF - 2010 IEEE Nuclear Science Symposium Conference Record (NSS/MIC) N2 - In our case the double-side-method is used to minimize the complexity of a matrix-readout. Here the number of channels is reduced to 2√N̅. It is also possible to benefit from the method in a single pixel readout system. One signal can be used to measure position and energy of the event, the other one can be applied to a fast trigger-circuit at the same time. In a next step we will investigate timing behavior and electrical crosstalk of the circuit. Y1 - 2011 SN - 1095-7863 SP - 1486 EP - 1487 PB - IEEE CY - New York ER - TY - CHAP A1 - Streun, M. A1 - Al-Kaddoum, R. A1 - Parl, C. A1 - Pietrzyk, U. A1 - Ziemons, Karl A1 - Waasen, S. van T1 - Simulation studies of optical photons in monolithic block scintillators T2 - 2011 IEEE Nuclear Science Symposium Conference Record (NSS/MIC) N2 - The interest in PET detectors with monolithic block scintillators is growing. In order to obtain high spatial resolutions dedicated positioning algorithms are required. But even an ideal algorithm can only deliver information which is provided by the detector. In this simulation study we investigated the light distribution on one surface of cuboid LSO scintillators of different size. Scintillators with a large aspect ratio (small footprint and large height) showed significant position information only for a minimum interaction depth of the gamma particle. The results allow a quantitative estimate for a useful aspect ratio. Y1 - 2012 SN - 978-1-4673-0120-6 (electronic ISBN) SN - 978-1-4673-0118-3 (print ISBN) U6 - https://doi.org/10.1109/NSSMIC.2011.6154621 SP - 1380 EP - 1382 PB - IEEE CY - New York ER -