TY - JOUR A1 - Hackl, Michael A1 - Leschinger, T. A1 - Staat, Manfred A1 - Müller, Lars-Peter A1 - Wegmann, Kilian T1 - Reconstruction of the interosseous membrane in the Essex Lopresti lesion — a biomechanical evaluation JF - Knee surgery, sports traumatology, arthroscopy N2 - Surgical reconstruction of the interosseous membrane (IOM) could restore longitudinal forearm stability to avoid persisting disability due to capituloradial and ulnocarpal impingement in Essex Lopresti lesions. This biomechanical study aimed to assess longitudinal forearm stability of intact specimens, after sectioning of the IOM and after reconstruction with a TightRope construct using either a single or double bundle technique. Y1 - 2016 U6 - https://doi.org/10.1007/s00167-016-4080-7 SN - 0942-2056 VL - Volume 24 IS - Supplement 1 SP - 130 EP - 131 PB - Springer CY - Berlin ER - TY - CHAP A1 - Grundmann, Jan Thimo A1 - Biele, Jens A1 - Dachwald, Bernd A1 - Grimm, Christian A1 - Lange, Caroline A1 - Ulamec, Stephan T1 - Small spacecraft for small solar system body science, planetary defence and applications T2 - IEEE Aerospace Conference 2016 N2 - Following the recent successful landings and occasional re-awakenings of PHILAE, the lander carried aboard ROSETTA to comet 67P/Churyumov-Gerasimenko, and the launch of the Mobile Asteroid Surface Scout, MASCOT, aboard the HAYABUSA2 space probe to asteroid (162173) Ryugu we present an overview of the characteristics and peculiarities of small spacecraft missions to small solar system bodies (SSSB). Their main purpose is planetary science which is transitioning from a ‘pure’ science of observation of the distant to one also supporting in-situ applications relevant for life on Earth. Here we focus on missions at the interface of SSSB science and planetary defence applications. We provide a brief overview of small spacecraft SSSB missions and on this background present recent missions, projects and related studies at the German Aerospace Center, DLR, that contribute to the worldwide planetary defence community. These range from Earth orbit technology demonstrators to active science missions in interplanetary space. We provide a summary of experience from recently flown missions with DLR participation as well as a number of studies. These include PHILAE, the lander of ESA’s ROSETTA comet rendezvous mission now on the surface of comet 67P/Churyumov-Gerasimenko, and the Mobile Asteroid Surface Scout, MASCOT, now in cruise to the ~1 km diameter C-type near-Earth asteroid (162173) Ryugu aboard the Japanese sample-return probe HAYABUSA2. We introduce the differences between the conventional methods employed in the design, integration and testing of large spacecraft and the new approaches developed by small spacecraft projects. We expect that the practical experience that can be gained from projects on extremely compressed timelines or with high-intensity operation phases on a newly explored small solar system body can contribute significantly to the study, preparation and realization of future planetary defence related missions. One is AIDA (Asteroid Impact & Deflection Assessment), a joint effort of ESA, JHU/APL, NASA, OCA and DLR, combining JHU/APL’s DART (Double Asteroid Redirection Test) and ESA’s AIM (Asteroid Impact Monitor) spacecraft in a mission towards near-Earth binary asteroid system (65803) Didymos. DLR is currently applying MASCOT heritage and lessons learned to the design of MASCOT2, a lander for the AIM mission to support a bistatic low frequency radar experiment with PHILAE/ROSETTA CONSERT heritage to explore the inner structure of Didymoon which is the designated impact target for DART. Y1 - 2016 SP - 1 EP - 20 ER - TY - JOUR A1 - Kowalski, Julia A1 - Linder, Peter A1 - Zierke, Simon A1 - von Wulfen, Benedikt A1 - Clemens, Joachim A1 - Konstantinidis, Konstantinos A1 - Ameres, Gerald A1 - Hoffmann, Ruth A1 - Mikucki, Jill A. A1 - Tulaczyk, Slawek M. A1 - Funke, Oliver A1 - Blandfort, Daniel A1 - Espe, Clemens A1 - Feldmann, Marco A1 - Francke, Gero A1 - Hiecker, S. A1 - Plescher, Engelbert A1 - Schöngarth, Sarah A1 - Dachwald, Bernd A1 - Digel, Ilya A1 - Artmann, Gerhard A1 - Eliseev, Dmitry A1 - Heinen, Dirk A1 - Scholz, Franziska A1 - Wiebusch, Christopher H. A1 - Macht, Sabine A1 - Bestmann, Ulf A1 - Reineking, Thomas A1 - Zetzsche, Christoph A1 - Schill, Kerstin A1 - Förstner, Roger A1 - Niedermeier, Herbert A1 - Szumski, Arkadiusz A1 - Eissfeller, Bernd A1 - Naumann, Uwe A1 - Helbing, Klaus T1 - Navigation technology for exploration of glacier ice with maneuverable melting probes JF - Cold Regions Science and Technology N2 - The Saturnian moon Enceladus with its extensive water bodies underneath a thick ice sheet cover is a potential candidate for extraterrestrial life. Direct exploration of such extraterrestrial aquatic ecosystems requires advanced access and sampling technologies with a high level of autonomy. A new technological approach has been developed as part of the collaborative research project Enceladus Explorer (EnEx). The concept is based upon a minimally invasive melting probe called the IceMole. The force-regulated, heater-controlled IceMole is able to travel along a curved trajectory as well as upwards. Hence, it allows maneuvers which may be necessary for obstacle avoidance or target selection. Maneuverability, however, necessitates a sophisticated on-board navigation system capable of autonomous operations. The development of such a navigational system has been the focal part of the EnEx project. The original IceMole has been further developed to include relative positioning based on in-ice attitude determination, acoustic positioning, ultrasonic obstacle and target detection integrated through a high-level sensor fusion. This paper describes the EnEx technology and discusses implications for an actual extraterrestrial mission concept. Y1 - 2016 U6 - https://doi.org/10.1016/j.coldregions.2015.11.006 SN - 0165-232X IS - 123 SP - 53 EP - 70 PB - Elsevier CY - Amsterdam ER -