TY - CHAP A1 - Tewari, Udit A1 - Neshvad, Surena A1 - Goldbach, Daniel A1 - Sachau, Jürgen T1 - Verification and Implementation of Pseudo-Random-Binary-Sequences for Online Determination of Grid Impedance Spectrum T2 - International Conference on Renewable Energies and Power Quality (ICREPQ´15), La Conuna, Spain, 25th to 27th March, 2015 Y1 - 2015 ER - TY - CHAP A1 - Srivastava, Alok A1 - Knolle, Friedhart A1 - Hoyler, Friedrich A1 - Scherer, Ulrich W. A1 - Schnug, Ewald T1 - Uranium Toxicity in the State of Punjab in North-Western India T2 - Management of Natural Resources in a Changing Environment N2 - Lately there has been an increasing concern about uranium toxicity in some districts of Punjab State located in the North Western part of India after the publication of a report (Blaurock-Busch et al. 2010) which showed that the concentration of uranium in hair and urine of children suffering from physical deformities, neurological and mental disorder from Malwa region (Fig. 1) of Punjab State was manifold higher than the reference ranges. A train which connects the affected region with the nearby city of Bikaner which has a Cancer Hospital has been nicknamed as Cancer Express due to the frenzy generated on account of uranium related toxicity. Y1 - 2015 SN - 978-3-319-12559-6 U6 - https://doi.org/10.1007/978-3-319-12559-6_21 SP - 271 EP - 275 PB - Springer CY - Cham ER - TY - CHAP A1 - Sirazitdinova, Y. A1 - Dulzon, A. A1 - Müller, Burghard T1 - Project management practices in engineering university T2 - 21st International Conference for Students and Young Scientists: Modern Technique and Technologies, MTT 2015; National Research Tomsk Polytechnic UniversityTomsk; Russian Federation; 5 October 2015 through 9 October 2015 Y1 - 2015 U6 - https://doi.org/10.1088/1757-899X/93/1/012080 N1 - IOP Conference Series: Materials Science and Engineering Vol. 93, Issue 1 ER - TY - JOUR A1 - Srivastava, A. A1 - Lahiri, S. A1 - Maiti, M. A1 - Knolle, F. A1 - Hoyler, Friedrich A1 - Scherer, Ulrich W. A1 - Schnug, E. W. T1 - Study of naturally occurring radioactive material (NORM) in top soil of Punjab State from the North Western part of India JF - Journal of Radioanalytical and Nuclear Chemistry Y1 - 2014 U6 - https://doi.org/0.1007/s10967-014-3450-1 SN - 1588-2780 (E-Journal); 0022-4081 (Print); 0134-0719 (Print); 0236-5731 (Print); 1417-2097 (Print) VL - 2014 IS - 302 SP - 1049 EP - 1052 PB - Springer Nature CY - Basel ER - TY - JOUR A1 - Marx, Ulrich A1 - Schenk, Friedrich A1 - Behrens, Jan A1 - Meyr, Ulrike A1 - Wanek, Paul A1 - Zang, Werner A1 - Schmitt, Robert A1 - Brüstle, Oliver A1 - Zenke, Martin A1 - Klocke, Fritz T1 - Automatic production of induced pluripotent stem cells JF - Procedia CIRP : First CIRP Conference on BioManufacturing Y1 - 2013 SN - 2212-8271 VL - Vol. 5 SP - 2 EP - 6 PB - Elsevier CY - Amsterdam ER - TY - CHAP A1 - Pieper, Martin A1 - Schulz, Silvia T1 - Teaching Simulation Methods with COMSOL Multiphysics N2 - This paper describes two courses on simulation methods for graduate students: “Simulation Methods” and “Simulation and Optimization in Virtual Engineering” The courses were planned to teach young engineers how to work with simulation software as well as to understand the necessary mathematical background. As simulation software COMSOL is used. The main philosophy was to combine theory and praxis in a way that motivates the students. In addition “soft skills” should be improved. This was achieved by project work as final examination. As underlying didactical principle the ideas of Bloom’s revised taxonomy were followed. The paper basically focusses on educational aspects, e.g. how to structure the course, plan the exercises, organize the project work and include practical COMSOL examples. KW - COMSOL Multiphysics KW - Optimization module KW - LiveLink for MATLAB KW - Bloom Taxonomy KW - education Y1 - 2014 ER - TY - CHAP A1 - Wetter, Martin A1 - Kern, Alexander T1 - Number of lightning strikes to tall structures - comparison of calculations and measurements using a modern lightning monitoring system T2 - 2014 International Conference on Lightning Protection (ICLP), Shanghai, China Y1 - 2014 SP - 1 EP - 7 ER - TY - CHAP A1 - Kern, Alexander A1 - Schelthoff, Christof A1 - Mathieu, Moritz T1 - Calculation of interception efficiencies for mesh-type air-terminations according to IEC 62305-3 using a dynamic electro-geometrical model T2 - International Conference on Lightning Protection (ICLP) : 2 - 7 Sept. 2012, Vienna Y1 - 2012 SN - 978-1-4673-1896-9 (E-Book) ; 978-1-4673-1898-3 (Print) SP - 1 EP - 6 PB - IEEE CY - Piscataway, NJ ER - TY - CHAP A1 - Lo Piparo, G. B. A1 - Kern, Alexander A1 - Mazzetti, C. T1 - Some masterpoints about risk due to lightning T2 - International Conference on Lightning Protection (ICLP) : 2 - 7 Sept. 2012, Vienna Y1 - 2012 SN - 978-1-4673-1896-9 (E-Book) ; 978-1-4673-1898-3 (Print) SP - 1 EP - 6 PB - IEEE CY - Piscataway, NJ ER - TY - CHAP A1 - Rousseau, Alain A1 - Kern, Alexander T1 - How to deal with environmental risk in IEC 62305-2 T2 - 2014 International Conference on Lightning Protection (ICLP), Shanghai, China N2 - The 2nd edition of the lightning risk management standard (IEC 62305-2) considers structures, which may endanger environment. In these cases, the loss is not limited to the structure itself, which is valid for usual structures. In the past (Edition 1) this danger was simply taken into account by a special hazard factor, multiplying the existing risk for the structure with a number. Now, in the edition 2, we add to the risk for the structure itself a “second risk” due to the losses outside the structure. The losses outside can be treated independently from what occurs inside. This is a major advantage to analyze the risk for sensitive structures, like chemical plants, nuclear plants, or structures containing explosives, etc. In this paper, the existing procedure given by the European version EN 62305-2 Ed.2 is further developed and applied to a few structures. Y1 - 2014 SP - 521 EP - 527 ER - TY - CHAP A1 - Kern, Alexander A1 - Braun, Christian T1 - Risk management according to IEC 62305-2 edition 2: 2010–12 assessment of structures with a risk of explosion T2 - 2014 International Conference on Lightning Protection (ICLP), Shanghai, China N2 - Risk management for structures with a risk of explosion should be considered very carefully when performing a risk analysis according to IEC 62305-2. In contrast to the 2006 edition of the standard, the 2010 edition describes the topic “Structures with a risk of explosion” in more detail. Moreover, in Germany separate procedures and parameters are defined for the risk analysis of structures with a risk of explosion (Supplement 3 of the German DIN EN 62305-2 standard). This paper describes the contents and the relevant calculations of this Supplement 3, together with a numerical example. Y1 - 2014 SP - 1237 EP - 1242 ER - TY - THES A1 - Reyes Ochoa, Leonel T1 - Engineering aspects of a parabolic trough collector field with direct steam generation and an organic rankine cycle Y1 - 2014 N1 - Aachen, Fachhochsch., Masterarbeit, 2014 PB - Fachhochschule Aachen CY - Aachen ER - TY - CHAP A1 - Butenweg, Christoph A1 - Marinković, Marko A1 - Pavese, Alberto A1 - Lanese, Igor A1 - Hoffmeister, Benno A1 - Pinkawa, Marius A1 - Vulcu, Mihai-Cristian A1 - Bursi, Oreste A1 - Nardin, Chiara A1 - Paolacci, Fabrizio A1 - Quinci, Gianluca A1 - Fragiadakis, Michalis A1 - Weber, Felix A1 - Huber, Peter A1 - Renault, Philippe A1 - Gündel, Max A1 - Dyke, Shirley A1 - Ciucci, M. A1 - Marino, A. T1 - Seismic performance of multi-component systems in special risk industrial facilities T2 - Proceedings of the seventeenth world conference on earthquake engineering N2 - Past earthquakes demonstrated the high vulnerability of industrial facilities equipped with complex process technologies leading to serious damage of the process equipment and multiple and simultaneous release of hazardous substances in industrial facilities. Nevertheless, the design of industrial plants is inadequately described in recent codes and guidelines, as they do not consider the dynamic interaction between the structure and the installations and thus the effect of seismic response of the installations on the response of the structure and vice versa. The current code-based approach for the seismic design of industrial facilities is considered not enough for ensure proper safety conditions against exceptional event entailing loss of content and related consequences. Accordingly, SPIF project (Seismic Performance of Multi- Component Systems in Special Risk Industrial Facilities) was proposed within the framework of the European H2020 - SERA funding scheme (Seismology and Earthquake Engineering Research Infrastructure Alliance for Europe). The objective of the SPIF project is the investigation of the seismic behavior of a representative industrial structure equipped with complex process technology by means of shaking table tests. The test structure is a three-story moment resisting steel frame with vertical and horizontal vessels and cabinets, arranged on the three levels and connected by pipes. The dynamic behavior of the test structure and installations is investigated with and without base isolation. Furthermore, both firmly anchored and isolated components are taken into account to compare their dynamic behavior and interactions with each other. Artificial and synthetic ground motions are applied to study the seismic response at different PGA levels. After each test, dynamic identification measurements are carried out to characterize the system condition. The contribution presents the numerical simulations to calibrate the tests on the prototype, the experimental setup of the investigated structure and installations, selected measurement data and finally describes preliminary experimental results. KW - industrial facilities KW - piping KW - installations KW - seismic loading KW - earthquakes Y1 - 2021 N1 - 17. World Conference on Earthquake Engineering, 17WCEE, Sendai, Japan, 2021-09-27 - 2021-10-02 ER - TY - CHAP A1 - Rosin, Julia A1 - Kubalski, Thomas A1 - Butenweg, Christoph T1 - Seismic Design of cylindrical liquid storage tanks T2 - Seismic design of industrial facilities : proceedings of the International Conference on Seismic Design of Industrial Facilities (SeDIF-Conference) ; [Aachen, 26. - 27. September 2013] / Chair of Structural Statics and Dynamics, RWTH Aachen. Sven Klinkel ..., ed. Y1 - 2014 SN - 978-3-658-02810-7 (E-Book) ; 978-3-658-02809-1 (Print) U6 - https://doi.org/10.1007/978-3-658-02810-7_36 SP - 429 EP - 440 PB - Springer Vieweg CY - Wiesbaden ER - TY - CHAP A1 - Altay, Okyay A1 - Butenweg, Christoph A1 - Klinkel, Sven T1 - Vibration mitigation of wind turbine towers by a new semiactive Tuned Liquid Column Damper T2 - 6. Word Congress on Structural Control and Monitoring, 15 - 17 July, 2014 Barcelona,Spain Y1 - 2014 ER - TY - CHAP A1 - Butenweg, Christoph A1 - Bursi, Oreste S. A1 - Nardin, Chiara A1 - Lanese, Igor A1 - Pavese, Alberto A1 - Marinković, Marko A1 - Paolacci, Fabrizio A1 - Quinci, Gianluca T1 - Experimental investigation on the seismic performance of a multi-component system for major-hazard industrial facilities T2 - Conference Proceedings: Pressure Vessels & Piping Conference Vol.5 N2 - Past earthquakes demonstrated the high vulnerability of industrial facilities equipped with complex process technologies leading to serious damage of the process equipment and multiple and simultaneous release of hazardous substances in industrial facilities. Nevertheless, the design of industrial plants is inadequately described in recent codes and guidelines, as they do not consider the dynamic interaction between the structure and the installations and thus the effect of seismic response of the installations on the response of the structure and vice versa. The current code-based approach for the seismic design of industrial facilities is considered not enough for ensure proper safety conditions against exceptional event entailing loss of content and related consequences. Accordingly, SPIF project (Seismic Performance of Multi-Component Systems in Special Risk Industrial Facilities) was proposed within the framework of the European H2020 - SERA funding scheme (Seismology and Earthquake Engineering Research Infrastructure Alliance for Europe). The objective of the SPIF project is the investigation of the seismic behaviour of a representative industrial structure equipped with complex process technology by means of shaking table tests. The test structure is a three-story moment resisting steel frame with vertical and horizontal vessels and cabinets, arranged on the three levels and connected by pipes. The dynamic behaviour of the test structure and of its relative several installations is investigated. Furthermore, both process components and primary structure interactions are considered and analyzed. Several PGA-scaled artificial ground motions are applied to study the seismic response at different levels. After each test, dynamic identification measurements are carried out to characterize the system condition. The contribution presents the experimental setup of the investigated structure and installations, selected measurement data and describes the obtained damage. Furthermore, important findings for the definition of performance limits, the effectiveness of floor response spectra in industrial facilities will be presented and discussed. KW - industrial facilities KW - piping KW - installations KW - seismic loading KW - earthquakes Y1 - 2021 SN - 9780791885352 U6 - https://doi.org/10.1115/PVP2021-61696 N1 - ASME 2021 Pressure Vessels & Piping Conference, July 13–15, 2021, Virtual, Online PB - American Society of Mechanical Engineers (ASME) CY - New York ER - TY - JOUR A1 - Edip, K. A1 - Sesov, V. A1 - Butenweg, Christoph A1 - Bojadjieva, J. T1 - Development of coupled numerical model for simulation of multiphase soil JF - Computers and Geotechnics N2 - In this paper, a coupled multiphase model considering both non-linearities of water retention curves and solid state modeling is proposed. The solid displacements and the pressures of both water and air phases are unknowns of the proposed model. The finite element method is used to solve the governing differential equations. The proposed method is demonstrated through simulation of seepage test and partially consolidation problem. Then, implementation of the model is done by using hypoplasticity for the solid phase and analyzing the fully saturated triaxial experiments. In integration of the constitutive law error controlling is improved and comparisons done accordingly. In this work, the advantages and limitations of the numerical model are discussed. Y1 - 2018 U6 - https://doi.org/10.1016/j.compgeo.2017.08.016 SN - 0266-352X VL - 96 SP - 118 EP - 131 PB - Elsevier CY - Amsterdam ER - TY - CHAP A1 - Rajan, Sreelakshmy A1 - Kubalski, Thomas A1 - Altay, Okyay A1 - Dalguer, Luis A A1 - Butenweg, Christoph T1 - Multi-dimensional fragility analysis of a RC building with components using response surface method T2 - 24th International Conference on Structural Mechanics in Reactor Technology, Busan, Korea, 20-25 August, 2017 N2 - Conventional fragility curves describe the vulnerability of the main structure under external hazards. However, in complex structures such as nuclear power plants, the safety or the risk depends also on the components associated with a system. The classical fault tree analysis gives an overall view of the failure and contains several subsystems to the main event, however, the interactions in the subsystems are not well represented. In order to represent the interaction of the components, a method suggested by Cimellaro et al. (2006) using multidimensional performance limit state functions to obtain the system fragility curves is adopted. This approach gives the possibility of deriving the cumulative fragility taking into account the interaction of the response of different components. In this paper, this approach is used to evaluate seismic risk of a representative electrical building infrastructure, including the component, of a nuclear power plant. A simplified model of the structure, with nonlinear material behavior is employed for the analysis in Abaqus©. The input variables considered are the material parameters, boundary conditions and the seismic input. The variability of the seismic input is obtained from selected ground motion time histories of spectrum compatible synthetic ccelerograms. Unlike the usual Monte Carlo methods used for the probabilistic analysis of the structure, a computationally effective response surface method is used. This method reduces the computational effort of the calculations by reducing the required number of samples. Y1 - 2017 SN - 9781510856776 SP - 3126 EP - 3135 PB - International Assn for Structural Mechanics in Reactor Technology (IASMiRT) CY - Raleigh, USA ER - TY - CHAP A1 - Milijaš, Aleksa A1 - Šakić, Bogdan A1 - Marinković, Marko A1 - Butenweg, Christoph ED - Papadrakakis, Manolis ED - Fragiadakis, Michalis T1 - Experimental investigation of behaviour of masonry infilled RC frames under out-of-plane loading T2 - Proceedings of COMPDYN 2021 N2 - Masonry infills are commonly used as exterior or interior walls in reinforced concrete (RC) frame structures and they can be encountered all over the world, including earthquake prone regions. Since the middle of the 20th century the behaviour of these non-structural elements under seismic loading has been studied in numerous experimental campaigns. However, most of the studies were carried out by means of in-plane tests, while there is a lack of out-of-plane experimental investigations. In this paper, the out-of-plane tests carried out on full scale masonry infilled frames are described. The results of the out-of-plane tests are presented in terms of force-displacement curves and measured out-of-plane displacements. Finally, the reliability of existing analytical approaches developed to estimate the out-of-plane strength of masonry infills is examined on presented experimental results. KW - Seismic loading KW - Masonry infill KW - Out-of-plane load KW - Out-of-plane strength Y1 - 2021 SN - 978-618-85072-5-8 U6 - https://doi.org/10.7712/120121.8528.18914 SN - 2623-3347 N1 - COMPDYN 2021, 28-30 June 2021, Streamed from Athens, Greece, 8th International Conference on Computational Methods in Structural Dynamics and Earthquake Engineering SP - 829 EP - 846 PB - National Technical University of Athens CY - Athen ER - TY - CHAP A1 - Gellert, Christoph A1 - Park, Jin A1 - Butenweg, Christoph T1 - Seismic safety verification of masonry structures T2 - Proceedings of the Eight International Masonry Conference : held in Dresden from 4th to 7th of July 2010 / [International Masonry Society ; Technische Universität Dresden]. Ed. by: Wolfram Jäger ... Volume 1. (Masonry / International Masonry Society Special Publication ; 11) Y1 - 2010 SN - 978-3-00-031381-3 SP - 813 EP - 822 PB - ARGE 8IMC Dresden CY - Radebeul ER -