TY - GEN A1 - Steuer-Dankert, Linda A1 - Bernhard, Sebastian A1 - Langolf, Jessica A1 - Leicht-Scholten, Carmen T1 - About the paradox of sustainable production and what we can do about it! T2 - Joint SCORAI-ERSCP-WUR conference on transforming consumption-production systems toward just and sustainable futures (SCP23) N2 - Sustainability is playing an increasingly important role. Not least due to the definition of the sustainable development goals (SDGs) in the framework of the agenda 2030 by the United Nations (UN) in 2015 (United Nations, n.d.), it has become clear that the cooperation of different actors is needed to achieve the defined 17 goals. Industry, as a global actor, has a special role to play in this. In the course of sustainable production processes and chains, the industry is confronted with the responsibility of reflecting on the consequences of its own trade on an ecological, economic, and also social level and deriving measures that, according to the definition of sustainability (Hauff, 1987), will also enable future generations to satisfy their needs. While the ecological pillar of sustainability is already being addressed by different industrial initiatives (Deloitte, 2021), it is questionable to what extent the economic and, above all, the social pillars of sustainability also play a decisive role. Accordingly, it is questionable to what extent sustainability in its triad of social, ecological, and economic aspects is taken into account holistically at all, and thus to what extent the industry contributes to achieving the 17 goals defined by the UN. This paper presents a qualitative study that explores these questions. Interviewing 31 representatives from the manufacturing industry in Germany, results indicate a Paradox of Sustainable Production expressed by a theoretical reflection of the need for focusing on people in production processes on the one hand and a lack of addressing the social pillar of sustainability in concepts on the other hand. However, while it is a troublesome finding given the striking need for sustainable development (The-Sustainable-Development-Goals-Report-2022; Kropp 2019; von Hauff 2021; Roy and Singh 2017), the paradox directly lays out a path of resolving it. This is because, given its nature, we can see that we could resolve it via the implementation of strong educational efforts trying to help the respective people of the manufacturing industry to understand the holistic and interdependent character of sustainable development (The-Sustainable-Development-Goals-Report-2022). Y1 - 2023 N1 - Volltext auf dem Opus-Server verfügbar ER - TY - CHAP A1 - Gorzalka, Philip A1 - Dahlke, Dennis A1 - Göttsche, Joachim A1 - Israel, Martin A1 - Patel, Dhruvkumar A1 - Prahl, Christoph A1 - Schmiedt, Jacob Estevam A1 - Frommholz, Dirk A1 - Hoffschmidt, Bernhard A1 - Linkiewicz, Magdalena T1 - Building Tomograph–From Remote Sensing Data of Existing Buildings to Building Energy Simulation Input T2 - EBC, Annex 71, Fifth expert meeting, October 17-19, 2018, Innsbruck, Austria Y1 - 2018 ER - TY - CHAP A1 - Baier, Ralph A1 - Brauner, Philipp A1 - Brillowski, Florian A1 - Dammers, Hannah A1 - Liehner, Luca A1 - Pütz, Sebastian A1 - Schneider, Sebastian A1 - Schollemann, Alexander A1 - Steuer-Dankert, Linda A1 - Vervier, Luisa A1 - Gries, Thomas A1 - Leicht-Scholten, Carmen A1 - Mertens, Alexander A1 - Nagel, Saskia K. A1 - Schuh, Günther A1 - Ziefle, Martina A1 - Nitsch, Verena ED - Brecher, Christian ED - Schuh, Günther ED - van der Alst, Wil ED - Jarke, Matthias ED - Piller, Frank T. ED - Padberg, Melanie T1 - Human-centered work design for the internet of production T2 - Internet of production - fundamentals, applications and proceedings N2 - Like all preceding transformations of the manufacturing industry, the large-scale usage of production data will reshape the role of humans within the sociotechnical production ecosystem. To ensure that this transformation creates work systems in which employees are empowered, productive, healthy, and motivated, the transformation must be guided by principles of and research on human-centered work design. Specifically, measures must be taken at all levels of work design, ranging from (1) the work tasks to (2) the working conditions to (3) the organizational level and (4) the supra-organizational level. We present selected research across all four levels that showcase the opportunities and requirements that surface when striving for human-centered work design for the Internet of Production (IoP). (1) On the work task level, we illustrate the user-centered design of human-robot collaboration (HRC) and process planning in the composite industry as well as user-centered design factors for cognitive assistance systems. (2) On the working conditions level, we present a newly developed framework for the classification of HRC workplaces. (3) Moving to the organizational level, we show how corporate data can be used to facilitate best practice sharing in production networks, and we discuss the implications of the IoP for new leadership models. Finally, (4) on the supra-organizational level, we examine overarching ethical dimensions, investigating, e.g., how the new work contexts affect our understanding of responsibility and normative values such as autonomy and privacy. Overall, these interdisciplinary research perspectives highlight the importance and necessary scope of considering the human factor in the IoP. KW - Responsibility KW - Privacy KW - Digital leadership KW - Best practice sharing KW - Cognitive assistance system KW - Human-robot collaboration KW - Human-centered work design Y1 - 2023 SN - 978-3-030-98062-7 U6 - https://doi.org/10.1007/978-3-030-98062-7_19-1 N1 - Part of the book series: Interdisciplinary Excellence Accelerator Series (IDEAS) SP - 1 EP - 23 PB - Springer CY - Cham ER - TY - GEN A1 - Frauenrath, Tobias A1 - Renz, Wolfgang A1 - Rieger, Jan A1 - Gömmel, Andreas A1 - Butenweg, Christoph A1 - Niendorf, Thoralf T1 - High Spatial Resolution 3D MRI of the Larynx Using a Dedicated TX/RX Phased Array Coil at 7.0T T2 - 2010 ISMRM-ESMRMB joint annual meeting N2 - MRI holds great potential for elucidating laryngeal and vocal fold anatomy together with the assessment of physiological processes associated in human phonation. However, MRI of human phonation remains very challenging due to the small size of the targeted structures, interfering signal from fat, air between the vocal folds and surrounding muscles and physiological motion. These anatomical/physiological constraints translate into stringent technical requirements in balancing, scan time, image contrast, immunity to physiological motion, temporal resolution and spatial resolution. Motivated by these challenges and limitations this study is aiming at translating the sensitivity gain at ultra-high magnetic fields for enhanced high spatial resolution 3D imaging of the larynx and vocal tract. To approach this goal a dedicated two channel TX/RX larynx coil is being proposed. Y1 - 2010 SN - 1545-4428 N1 - ISMRM-ESMRMB joint annual meeting, 1 - 7 May 2010, Stockholm, Sweden ER - TY - JOUR A1 - Maurer, Florian A1 - Rieke, Christian A1 - Schemm, Ralf A1 - Stollenwerk, Dominik T1 - Analysis of an urban grid with high photovoltaic and e-mobility penetration JF - Energies N2 - This study analyses the expected utilization of an urban distribution grid under high penetration of photovoltaic and e-mobility with charging infrastructure on a residential level. The grid utilization and the corresponding power flow are evaluated, while varying the control strategies and photovoltaic installed capacity in different scenarios. Four scenarios are used to analyze the impact of e-mobility. The individual mobility demand is modelled based on the largest German studies on mobility “Mobilität in Deutschland”, which is carried out every 5 years. To estimate the ramp-up of photovoltaic generation, a potential analysis of the roof surfaces in the supply area is carried out via an evaluation of an open solar potential study. The photovoltaic feed-in time series is derived individually for each installed system in a resolution of 15 min. The residential consumption is estimated using historical smart meter data, which are collected in London between 2012 and 2014. For a realistic charging demand, each residential household decides daily on the state of charge if their vehicle requires to be charged. The resulting charging time series depends on the underlying behavior scenario. Market prices and mobility demand are therefore used as scenario input parameters for a utility function based on the current state of charge to model individual behavior. The aggregated electricity demand is the starting point of the power flow calculation. The evaluation is carried out for an urban region with approximately 3100 residents. The analysis shows that increased penetration of photovoltaics combined with a flexible and adaptive charging strategy can maximize PV usage and reduce the need for congestion-related intervention by the grid operator by reducing the amount of kWh charged from the grid by 30% which reduces the average price of a charged kWh by 35% to 14 ct/kWh from 21.8 ct/kWh without PV optimization. The resulting grid congestions are managed by implementing an intelligent price or control signal. The analysis took place using data from a real German grid with 10 subgrids. The entire software can be adapted for the analysis of different distribution grids and is publicly available as an open-source software library on GitHub. KW - distribution grid simulation KW - smart-charging KW - e-mobility Y1 - 2023 U6 - https://doi.org/10.3390/en16083380 SN - 1996-1073 N1 - This article belongs to the Special Issue "Advanced Solutions for the Efficient Integration of Electric Vehicles in Electricity Grids" N1 - Corresponding author: Florian Maurer VL - 16 IS - 8 PB - MDPI CY - Basel ER - TY - JOUR A1 - Kahmann, Stephanie L. A1 - Rausch, Valentin A1 - Plümer, Jonathan A1 - Müller, Lars P. A1 - Pieper, Martin A1 - Wegmann, Kilian T1 - The automized fracture edge detection and generation of three-dimensional fracture probability heat maps JF - Medical Engineering & Physics N2 - With proven impact of statistical fracture analysis on fracture classifications, it is desirable to minimize the manual work and to maximize repeatability of this approach. We address this with an algorithm that reduces the manual effort to segmentation, fragment identification and reduction. The fracture edge detection and heat map generation are performed automatically. With the same input, the algorithm always delivers the same output. The tool transforms one intact template consecutively onto each fractured specimen by linear least square optimization, detects the fragment edges in the template and then superimposes them to generate a fracture probability heat map. We hypothesized that the algorithm runs faster than the manual evaluation and with low (< 5 mm) deviation. We tested the hypothesis in 10 fractured proximal humeri and found that it performs with good accuracy (2.5 mm ± 2.4 mm averaged Euclidean distance) and speed (23 times faster). When applied to a distal humerus, a tibia plateau, and a scaphoid fracture, the run times were low (1–2 min), and the detected edges correct by visual judgement. In the geometrically complex acetabulum, at a run time of 78 min some outliers were considered acceptable. An automatically generated fracture probability heat map based on 50 proximal humerus fractures matches the areas of high risk of fracture reported in medical literature. Such automation of the fracture analysis method is advantageous and could be extended to reduce the manual effort even further. KW - Fracture classification KW - Shoulder KW - Probability distribution mapping KW - Morphing KW - Imaging Y1 - 2022 SN - 1350-4533 VL - 2022 IS - 110 PB - Elsevier CY - Amsterdam ER - TY - GEN A1 - Hezel, Fabian A1 - Frauenrath, Tobias A1 - Renz, Wolfgang A1 - Schulz-Menger, Jeanette A1 - Niendorf, Thoralf T1 - Feasibility of CINE Myocardial T2* Mapping Using Susceptibility Weighted Gradient-Echo Imaging at 7.0 T T2 - 2010 ISMRM-ESMRMB joint annual meeting N2 - This study is designed to demonstrate the promise of susceptibility weighted 2D CINE FLASH and T2* Mapping of the heart at 7T. Y1 - 2010 SN - 1545-4428 N1 - ISMRM-ESMRMB joint annual meeting, 1 - 7 May 2010, Stockholm, Sweden ER - TY - GEN A1 - Frauenrath, Tobias A1 - de Geyer d'Orth, Thibaut A1 - Niendorf, Thoralf T1 - Assessment of Accuracy & Reproducibility of ECG, Pulse Oximetry & Phonocardiogram Gating of Cardiac MRI at 7T T2 - 2011 ISMRM Annual Meeting Proceedings N2 - At (ultra)high magnetic fields the artifact sensitivity of ECG recordings increases. This bears the risk of R-wave mis-registration which has been consistently reported for ECG triggered CMR at 7.0T. Realizing the constraints of conventional ECG, acoustic cardiac triggering (ACT) has been proposed. The clinical ACT has not been carefully examined yet. For this reason, this work scrutinizes the suitability, accuracy and reproducibility of ACT for CMR at 7.0T. For this purpose, the trigger reliability and trigger detection variance are examined together with an qualitative and quantitative assessment of image quality of the heart at 7.0T. Y1 - 2011 SN - 1545-4428 N1 - ISMRM 19th Annual Meeting & Exhibition, 7-13 May 2011, Montreal, Quebec, Canada ER -