TY - JOUR A1 - Digel, Ilya A1 - Akimbekov, Nuraly S. A1 - Rogachev, Evgeniy A1 - Pogorelova, Natalia T1 - Bacterial cellulose produced by Medusomyces gisevii on glucose and sucrose: biosynthesis and structural properties JF - Cellulose N2 - In this work, the effects of carbon sources and culture media on the production and structural properties of bacterial cellulose (BC) synthesized by Medusomyces gisevii have been studied. The culture medium was composed of different initial concentrations of glucose or sucrose dissolved in 0.4% extract of plain green tea. Parameters of the culture media (titratable acidity, substrate conversion degree etc.) were monitored daily for 20 days of cultivation. The BC pellicles produced on different carbon sources were characterized in terms of biomass yield, crystallinity and morphology by field emission scanning electron microscopy (FE-SEM), atomic force microscopy and X-ray diffraction. Our results showed that Medusomyces gisevii had higher BC yields in media with sugar concentrations close to 10 g L−1 after a 18–20 days incubation period. Glucose in general lead to a higher BC yield (173 g L−1) compared to sucrose (163.5 g L−1). The BC crystallinity degree and surface roughness were higher in the samples synthetized from sucrose. Obtained FE-SEM micrographs show that the BC pellicles synthesized in the sucrose media contained densely packed tangles of cellulose fibrils whereas the BC produced in the glucose media displayed rather linear geometry of the BC fibrils without noticeable aggregates. KW - Bacterial cellulose KW - Medusomyces gisevi KW - Carbon sources KW - Culture media KW - Cellulose nanostructure Y1 - 2023 U6 - https://doi.org/10.1007/s10570-023-05592-z SN - 1572-882X (Online) SN - 0969-0239 (Print) N1 - Corresponding author: Ilya Digel PB - Springer Science + Business Media CY - Dordrecht ER - TY - JOUR A1 - Sildatke, Michael A1 - Karwanni, Hendrik A1 - Kraft, Bodo A1 - Zündorf, Albert T1 - A distributed microservice architecture pattern for the automated generation of information extraction pipelines JF - SN Computer Science N2 - Companies often build their businesses based on product information and therefore try to automate the process of information extraction (IE). Since the information source is usually heterogeneous and non-standardized, classic extract, transform, load techniques reach their limits. Hence, companies must implement the newest findings from research to tackle the challenges of process automation. They require a flexible and robust system that is extendable and ensures the optimal processing of the different document types. This paper provides a distributed microservice architecture pattern that enables the automated generation of IE pipelines. Since their optimal design is individual for each input document, the system ensures the ad-hoc generation of pipelines depending on specific document characteristics at runtime. Furthermore, it introduces the automated quality determination of each available pipeline and controls the integration of new microservices based on their impact on the business value. The introduced system enables fast prototyping of the newest approaches from research and supports companies in automating their IE processes. Based on the automated quality determination, it ensures that the generated pipelines always meet defined business requirements when they come into productive use. KW - Architectural design KW - Model-driven software engineering KW - Software and systems modeling KW - Enterprise information systems KW - Information extraction Y1 - 2023 U6 - https://doi.org/10.1007/s42979-023-02256-4 SN - 2661-8907 N1 - Corresponding authors: Michael Sildatke, Hendrik Karwanni IS - 4, Article number: 833 PB - Springer Singapore CY - Singapore ER - TY - JOUR A1 - Alnemer, Momin Sami Mohammad A1 - Kotliar, Konstantin A1 - Neuhaus, Valentin A1 - Pape, Hans-Christoph A1 - Ciritsis, Bernhard D. T1 - Cost-effectiveness analysis of surgical proximal femur fracture prevention in elderly: a Markov cohort simulation model JF - Cost Effectiveness and Resource Allocation N2 - Background Hip fractures are a common and costly health problem, resulting in significant morbidity and mortality, as well as high costs for healthcare systems, especially for the elderly. Implementing surgical preventive strategies has the potential to improve the quality of life and reduce the burden on healthcare resources, particularly in the long term. However, there are currently limited guidelines for standardizing hip fracture prophylaxis practices. Methods This study used a cost-effectiveness analysis with a finite-state Markov model and cohort simulation to evaluate the primary and secondary surgical prevention of hip fractures in the elderly. Patients aged 60 to 90 years were simulated in two different models (A and B) to assess prevention at different levels. Model A assumed prophylaxis was performed during the fracture operation on the contralateral side, while Model B included individuals with high fracture risk factors. Costs were obtained from the Centers for Medicare & Medicaid Services, and transition probabilities and health state utilities were derived from available literature. The baseline assumption was a 10% reduction in fracture risk after prophylaxis. A sensitivity analysis was also conducted to assess the reliability and variability of the results. Results With a 10% fracture risk reduction, model A costs between $8,850 and $46,940 per quality-adjusted life-year ($/QALY). Additionally, it proved most cost-effective in the age range between 61 and 81 years. The sensitivity analysis established that a reduction of ≥ 2.8% is needed for prophylaxis to be definitely cost-effective. The cost-effectiveness at the secondary prevention level was most sensitive to the cost of the contralateral side’s prophylaxis, the patient’s age, and fracture treatment cost. For high-risk patients with no fracture history, the cost-effectiveness of a preventive strategy depends on their risk profile. In the baseline analysis, the incremental cost-effectiveness ratio at the primary prevention level varied between $11,000/QALY and $74,000/QALY, which is below the defined willingness to pay threshold. Conclusion Due to the high cost of hip fracture treatment and its increased morbidity, surgical prophylaxis strategies have demonstrated that they can significantly relieve the healthcare system. Various key assumptions facilitated the modeling, allowing for adequate room for uncertainty. Further research is needed to evaluate health-state-associated risks. KW - Hip fractures KW - Prevention KW - Geriatric KW - Cost-effectiveness KW - Prophylaxis Y1 - 2023 U6 - https://doi.org/10.1186/s12962-023-00482-4 SN - 1478-7547 N1 - Corresponding author: Momin S. Alnemer IS - 21, Article number: 77 PB - Springer Nature ER - TY - JOUR A1 - Janus, Kevin Alexander A1 - Achtsnicht, Stefan A1 - Drinic, Aleksander A1 - Kopp, Alexander A1 - Keusgen, Michael A1 - Schöning, Michael Josef T1 - Transient magnesium-based thin-film temperature sensor on a flexible, bioabsorbable substrate for future medical applications JF - Applied Research N2 - In this work, the bioabsorbable materials, namely fibroin, polylactide acid (PLA), magnesium and magnesium oxide are investigated for their application as transient, resistive temperature detectors (RTD). For this purpose, a thin-film magnesium-based meander-like electrode is deposited onto a flexible, bioabsorbable substrate (fibroin or PLA) and encapsulated (passivated) by additional magnesium oxide layers on top and below the magnesium-based electrode. The morphology of different layered RTDs is analyzed by scanning electron microscopy. The sensor performance and lifetime of the RTD is characterized both under ambient atmospheric conditions between 30°C and 43°C, and wet tissue-like conditions with a constant temperature regime of 37°C. The latter triggers the degradation process of the magnesium-based layers. The 3-layers RTDs on a PLA substrate could achieve a lifetime of 8.5 h. These sensors also show the best sensor performance under ambient atmospheric conditions with a mean sensitivity of 0.48 Ω/°C ± 0.01 Ω/°C. KW - Silk fibroin KW - Polylactide acid KW - Bioabsorbable KW - Resistive temperature detector Y1 - 2023 U6 - https://doi.org/10.1002/appl.202300102 SN - 2702-4288 (Print) N1 - Corresponding author: Michael Josef Schöning IS - Accepted manuscript PB - Wiley-VCH ER - TY - JOUR A1 - Karschuck, Tobias A1 - Schmidt, Stefan A1 - Achtsnicht, Stefan A1 - Poghossian, Arshak A1 - Wagner, Patrick A1 - Schöning, Michael Josef T1 - Multiplexing system for automated characterization of a capacitive field-effect sensor array JF - Physica Status Solidi A N2 - In comparison to single-analyte devices, multiplexed systems for a multianalyte detection offer a reduced assay time and sample volume, low cost, and high throughput. Herein, a multiplexing platform for an automated quasi-simultaneous characterization of multiple (up to 16) capacitive field-effect sensors by the capacitive–voltage (C–V) and the constant-capacitance (ConCap) mode is presented. The sensors are mounted in a newly designed multicell arrangement with one common reference electrode and are electrically connected to the impedance analyzer via the base station. A Python script for the automated characterization of the sensors executes the user-defined measurement protocol. The developed multiplexing system is tested for pH measurements and the label-free detection of ligand-stabilized, charged gold nanoparticles. KW - Capacitive field-effect sensor KW - Gold nanoparticles KW - Label-free detection KW - Multicell KW - Multiplexing Y1 - 2023 U6 - https://doi.org/10.1002/pssa.202300265 SN - 1862-6300 (Print) SN - 1862-6319 (Online) N1 - Corresponding author: Michael Josef Schöning VL - 220 IS - 22 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Uysal, Karya A1 - Firat, Ipek Serat A1 - Creutz, Till A1 - Aydin, Inci Cansu A1 - Artmann, Gerhard A1 - Teusch, Nicole A1 - Temiz Artmann, Aysegül T1 - A novel in vitro wound healing assay using free-standing, ultra-thin PDMS membranes JF - membranes N2 - Advances in polymer science have significantly increased polymer applications in life sciences. We report the use of free-standing, ultra-thin polydimethylsiloxane (PDMS) membranes, called CellDrum, as cell culture substrates for an in vitro wound model. Dermal fibroblast monolayers from 28- and 88-year-old donors were cultured on CellDrums. By using stainless steel balls, circular cell-free areas were created in the cell layer (wounding). Sinusoidal strain of 1 Hz, 5% strain, was applied to membranes for 30 min in 4 sessions. The gap circumference and closure rate of un-stretched samples (controls) and stretched samples were monitored over 4 days to investigate the effects of donor age and mechanical strain on wound closure. A significant decrease in gap circumference and an increase in gap closure rate were observed in trained samples from younger donors and control samples from older donors. In contrast, a significant decrease in gap closure rate and an increase in wound circumference were observed in the trained samples from older donors. Through these results, we propose the model of a cell monolayer on stretchable CellDrums as a practical tool for wound healing research. The combination of biomechanical cell loading in conjunction with analyses such as gene/protein expression seems promising beyond the scope published here. Y1 - 2022 U6 - https://doi.org/10.3390/membranes13010022 N1 - This article belongs to the Special Issue "Latest Scientific Discoveries in Polymer Membranes" VL - 2023 IS - 13(1) PB - MDPI CY - Basel ER - TY - JOUR A1 - Thiebes, Anja Lena A1 - Klein, Sarah A1 - Zingsheim, Jonas A1 - Möller, Georg H. A1 - Gürzing, Stefanie A1 - Reddemann, Manuel A. A1 - Behbahani, Mehdi A1 - Cornelissen, Christian G. T1 - Effervescent atomizer as novel cell spray technology to decrease the gas-to-liquid ratio JF - pharmaceutics N2 - Cell spraying has become a feasible application method for cell therapy and tissue engineering approaches. Different devices have been used with varying success. Often, twin-fluid atomizers are used, which require a high gas velocity for optimal aerosolization characteristics. To decrease the amount and velocity of required air, a custom-made atomizer was designed based on the effervescent principle. Different designs were evaluated regarding spray characteristics and their influence on human adipose-derived mesenchymal stromal cells. The arithmetic mean diameters of the droplets were 15.4–33.5 µm with decreasing diameters for increasing gas-to-liquid ratios. The survival rate was >90% of the control for the lowest gas-to-liquid ratio. For higher ratios, cell survival decreased to approximately 50%. Further experiments were performed with the design, which had shown the highest survival rates. After seven days, no significant differences in metabolic activity were observed. The apoptosis rates were not influenced by aerosolization, while high gas-to-liquid ratios caused increased necrosis levels. Tri-lineage differentiation potential into adipocytes, chondrocytes, and osteoblasts was not negatively influenced by aerosolization. Thus, the effervescent aerosolization principle was proven suitable for cell applications requiring reduced amounts of supplied air. This is the first time an effervescent atomizer was used for cell processing. KW - tri-lineage differentiation KW - survival KW - twin-fluid atomizer KW - adipose-derived stromal cells (ASCs) KW - cell atomization KW - cell aerosolization Y1 - 2022 U6 - https://doi.org/10.3390/pharmaceutics14112421 N1 - This article belongs to the Special Issue "Stromal, Stem, Signaling Cells: The Multiple Roles and Applications of Mesenchymal Cells" VL - 14 IS - 11 PB - MDPI CY - Basel ER - TY - JOUR A1 - Özsoylu, Dua A1 - Aliazizi, Fereshteh A1 - Wagner, Patrick A1 - Schöning, Michael Josef T1 - Template bacteria-free fabrication of surface imprinted polymer-based biosensor for E. coli detection using photolithographic mimics: Hacking bacterial adhesion JF - Biosensors and Bioelectronics N2 - As one class of molecular imprinted polymers (MIPs), surface imprinted polymer (SIP)-based biosensors show great potential in direct whole-bacteria detection. Micro-contact imprinting, that involves stamping the template bacteria immobilized on a substrate into a pre-polymerized polymer matrix, is the most straightforward and prominent method to obtain SIP-based biosensors. However, the major drawbacks of the method arise from the requirement for fresh template bacteria and often non-reproducible bacteria distribution on the stamp substrate. Herein, we developed a positive master stamp containing photolithographic mimics of the template bacteria (E. coli) enabling reproducible fabrication of biomimetic SIP-based biosensors without the need for the “real” bacteria cells. By using atomic force and scanning electron microscopy imaging techniques, respectively, the E. coli-capturing ability of the SIP samples was tested, and compared with non-imprinted polymer (NIP)-based samples and control SIP samples, in which the cavity geometry does not match with E. coli cells. It was revealed that the presence of the biomimetic E. coli imprints with a specifically designed geometry increases the sensor E. coli-capturing ability by an “imprinting factor” of about 3. These findings show the importance of geometry-guided physical recognition in bacterial detection using SIP-based biosensors. In addition, this imprinting strategy was employed to interdigitated electrodes and QCM (quartz crystal microbalance) chips. E. coli detection performance of the sensors was demonstrated with electrochemical impedance spectroscopy (EIS) and QCM measurements with dissipation monitoring technique (QCM-D). KW - Surface imprinted polymer KW - E. coli detection KW - Photolithographic mimics KW - Master stamp KW - Quartz crystal microbalance Y1 - 2024 U6 - https://doi.org/10.1016/j.bios.2024.116491 SN - 1873-4235 (eISSN) SN - 0956-5663 N1 - Corresponding author: Michael J. Schöning VL - 261 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Ayala, Rafael Ceja A1 - Harris, Isaac A1 - Kleefeld, Andreas A1 - Pallikarakis, Nikolaos T1 - Analysis of the transmission eigenvalue problem with two conductivity parameters JF - Applicable Analysis N2 - In this paper, we provide an analytical study of the transmission eigenvalue problem with two conductivity parameters. We will assume that the underlying physical model is given by the scattering of a plane wave for an isotropic scatterer. In previous studies, this eigenvalue problem was analyzed with one conductive boundary parameter whereas we will consider the case of two parameters. We prove the existence and discreteness of the transmission eigenvalues as well as study the dependence on the physical parameters. We are able to prove monotonicity of the first transmission eigenvalue with respect to the parameters and consider the limiting procedure as the second boundary parameter vanishes. Lastly, we provide extensive numerical experiments to validate the theoretical work. KW - Transmission Eigenvalues KW - Conductive Boundary Condition KW - Inverse Scattering Y1 - 2023 U6 - https://doi.org/10.1080/00036811.2023.2181167 SN - 0003-6811 PB - Taylor & Francis ER - TY - JOUR A1 - Ketelhut, Maike A1 - Brügge, G. M. A1 - Göll, Fabian A1 - Braunstein, Bjoern A1 - Albracht, Kirsten A1 - Abel, Dirk T1 - Adaptive iterative learning control of an industrial robot during neuromuscular training JF - IFAC PapersOnLine N2 - To prevent the reduction of muscle mass and loss of strength coming along with the human aging process, regular training with e.g. a leg press is suitable. However, the risk of training-induced injuries requires the continuous monitoring and controlling of the forces applied to the musculoskeletal system as well as the velocity along the motion trajectory and the range of motion. In this paper, an adaptive norm-optimal iterative learning control algorithm to minimize the knee joint loadings during the leg extension training with an industrial robot is proposed. The response of the algorithm is tested in simulation for patients with varus, normal and valgus alignment of the knee and compared to the results of a higher-order iterative learning control algorithm, a robust iterative learning control and a recently proposed conventional norm-optimal iterative learning control algorithm. Although significant improvements in performance are made compared to the conventional norm-optimal iterative learning control algorithm with a small learning factor, for the developed approach as well as the robust iterative learning control algorithm small steady state errors occur. KW - Iterative learning control KW - Robotic rehabilitation KW - Adaptive control Y1 - 2020 U6 - https://doi.org/10.1016/j.ifacol.2020.12.741 SN - 2405-8963 VL - 53 IS - 2 SP - 16468 EP - 16475 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Ketelhut, Maike A1 - Kolditz, Melanie A1 - Göll, Fabian A1 - Braunstein, Bjoern A1 - Albracht, Kirsten A1 - Abel, Dirk T1 - Admittance control of an industrial robot during resistance training JF - IFAC-PapersOnLine N2 - Neuromuscular strength training of the leg extensor muscles plays an important role in the rehabilitation and prevention of age and wealth related diseases. In this paper, we focus on the design and implementation of a Cartesian admittance control scheme for isotonic training, i.e. leg extension and flexion against a predefined weight. For preliminary testing and validation of the designed algorithm an experimental research and development platform consisting of an industrial robot and a force plate mounted at its end-effector has been used. Linear, diagonal and arbitrary two-dimensional motion trajectories with different weights for the leg extension and flexion part are applied. The proposed algorithm is easily adaptable to trajectories consisting of arbitrary six-dimensional poses and allows the implementation of individualized trajectories. KW - Assistive technology KW - Rehabilitation engineering KW - Human-Computer interaction KW - Automatic control Y1 - 2019 U6 - https://doi.org/10.1016/j.ifacol.2019.12.102 SN - 2405-8963 N1 - 14th IFAC Symposium on Analysis, Design, and Evaluation of Human Machine Systems HMS 2019 Tallinn, Estonia, 16–91 September 2019 VL - 52 IS - 19 SP - 223 EP - 228 PB - Elsevier CY - Amsterdam ER - TY - CHAP A1 - Ketelhut, Maike A1 - Göll, Fabian A1 - Braunstein, Bjoern A1 - Albracht, Kirsten A1 - Abel, Dirk T1 - Iterative learning control of an industrial robot for neuromuscular training T2 - 2019 IEEE Conference on Control Technology and Applications N2 - Effective training requires high muscle forces potentially leading to training-induced injuries. Thus, continuous monitoring and controlling of the loadings applied to the musculoskeletal system along the motion trajectory is required. In this paper, a norm-optimal iterative learning control algorithm for the robot-assisted training is developed. The algorithm aims at minimizing the external knee joint moment, which is commonly used to quantify the loading of the medial compartment. To estimate the external knee joint moment, a musculoskeletal lower extremity model is implemented in OpenSim and coupled with a model of an industrial robot and a force plate mounted at its end-effector. The algorithm is tested in simulation for patients with varus, normal and valgus alignment of the knee. The results show that the algorithm is able to minimize the external knee joint moment in all three cases and converges after less than seven iterations. KW - Knee KW - Training KW - Load modeling KW - Force KW - Iterative learning control Y1 - 2019 SN - 978-1-7281-2767-5 (ePub) SN - 978-1-7281-2766-8 (USB) SN - 978-1-7281-2768-2 (PoD) U6 - https://doi.org/10.1109/CCTA.2019.8920659 N1 - 2019 IEEE Conference on Control Technology and Applications (CCTA) Hong Kong, China, August 19-21, 2019 PB - IEEE CY - New York ER - TY - GEN A1 - Blottner, Dieter A1 - Hastermann, Maria A1 - Muckelt, Paul A1 - Albracht, Kirsten A1 - Schoenrock, Britt A1 - Salanova, Michele A1 - Warner, Martin A1 - Gunga, Hans-Christian A1 - Stokes, Maria T1 - MYOTONES - Inflight muscle health status monitoring during long-duration space missions onboard the International Space Station: a single case study T2 - IAC Papers Archive N2 - The MYOTONES experiment is the first to monitor changes in the basic biomechanical properties (tone, elasticity and stiffness) of the resting human myofascial system due to microgravity with a oninvasive, portable device on board the ISS. The MyotonPRO device applies several brief mechanical stimuli to the surface of the skin, and the natural oscillation signals of the tissue beneath are detected and computed by the MyotonPRO. Thus, an objective, quick and easy determination of the state of the underlying tissue is possible. Two preflight, four inflight and four post flight measurements were performed on a male astronaut using the same 10 measurement points (MP) for each session. MPs were located on the plantar fascia, Achilles tendon, M. soleus, M. gastrocnemius, M. multifidus, M. splenius capitis, M. deltoideus anterior, M. rectus femoris, infrapatellar tendon, M. tibialis anterior. Subcutaneous tissues thickness above the MPs was measured using ultrasound imaging. Magnetic resonance images (MRI) of lower limb muscles and functional tests were also performed pre- and postflight. Our first measurements on board the ISS confirmed increased tone and stiffness of the lumbar multifidus muscle, an important trunk stabilizer, dysfunction of which is known to be associated with back pain. Furthermore, reduced tone and stiffness of Achilles tendon and plantar fascia were observed inflight vs. preflight, confirming previous findings from terrestrial analog studies and parabolic flights. Unexpectedly, the deltoid showed negative inflight changes in tone and stiffness, and increased elasticity, suggesting a potential risk of muscle atrophy in longer spaceflight that should be addressed by adequate inflight countermeasure protocols. Most values from limb and back MPS showed deflected patterns (in either directions) from inflight shortly after the re-entry phase on the landing day and one week later. Most parameter values then normalized to baseline after 3 weeks likely due to 1G re-adaptation and possible outcome of the reconditioning protocol. No major changes in subcutaneous tissues thickness above the MPs were found inflight vs preflight, suggesting no bias (i.e., fluid shift, extreme tissue thickening or loss). Pre- and postflight MRI and functional tests showed negligible changes in calf muscle size, power and force, which is likely due to training effects from current inflight exercise protocols. The MYOTONES experiment is currently ongoing to collect data from further crew members. The potential impact of this research is to better understand the effects of microgravity and countermeasures over the time course of an ISS mission cycle. This will enable exercise countermeasures to be tailored Y1 - 2019 SN - 00741795 N1 - International Astronautical Congress: space: the power of the past, the promise of the future - Washington DC, USA/Vereinigte Staaten von Amerika Dauer: 21.10.2019 → 25.10.2019 PB - Pergamon CY - Oxford ER - TY - JOUR A1 - Werkhausen, Amelie A1 - Cronin, Neil J. A1 - Albracht, Kirsten A1 - Paulsen, Gøran A1 - Larsen, Askild V. A1 - Bojsen-Møller, Jens A1 - Seynnes, Olivier R. T1 - Training-induced increase in Achilles tendon stiffness affects tendon strain pattern during running JF - PeerJ N2 - Background During the stance phase of running, the elasticity of the Achilles tendon enables the utilisation of elastic energy and allows beneficial contractile conditions for the triceps surae muscles. However, the effect of changes in tendon mechanical properties induced by chronic loading is still poorly understood. We tested the hypothesis that a training-induced increase in Achilles tendon stiffness would result in reduced tendon strain during the stance phase of running, which would reduce fascicle strains in the triceps surae muscles, particularly in the mono-articular soleus. Methods Eleven subjects were assigned to a training group performing isometric singleleg plantarflexion contractions three times per week for ten weeks, and another ten subjects formed a control group. Before and after the training period, Achilles tendon stiffness was estimated, and muscle-tendon mechanics were assessed during running at preferred speed using ultrasonography, kinematics and kinetics. Results Achilles tendon stiffness increased by 18% (P <0:01) in the training group, but the associated reduction in strain seen during isometric contractions was not statistically significant. Tendon elongation during the stance phase of running was similar after training, but tendon recoil was reduced by 30% (P <0:01), while estimated tendon force remained unchanged. Neither gastrocnemius medialis nor soleus fascicle shortening during stance was affected by training. Discussion These results show that a training-induced increase in Achilles tendon stiffness altered tendon behaviour during running. Despite training-induced changes in tendon mechanical properties and recoil behaviour, the data suggest that fascicle shortening patterns were preserved for the running speed that we examined. The asymmetrical changes in tendon strain patterns supports the notion that simple inseries models do not fully explain the mechanical output of the muscle-tendon unit during a complex task like running. KW - Achilles tendon KW - Stiffness KW - Running KW - Tendon properties KW - Architectural gear ratio Y1 - 2019 U6 - https://doi.org/10.7717/peerj.6764 SN - 21678359 PB - Peer CY - London ER - TY - JOUR A1 - Ketelhut, Maike A1 - Göll, Fabian A1 - Braunstein, Björn A1 - Albracht, Kirsten A1 - Abel, Dirk T1 - Comparison of different training algorithms for the leg extension training with an industrial robot JF - Current Directions in Biomedical Engineering N2 - In the past, different training scenarios have been developed and implemented on robotic research platforms, but no systematic analysis and comparison have been done so far. This paper deals with the comparison of an isokinematic (motion with constant velocity) and an isotonic (motion against constant weight) training algorithm. Both algorithms are designed for a robotic research platform consisting of a 3D force plate and a high payload industrial robot, which allows leg extension training with arbitrary six-dimensional motion trajectories. In the isokinematic as well as the isotonic training algorithm, individual paths are defined i n C artesian s pace by sufficient s upport p oses. I n t he i sotonic t raining s cenario, the trajectory is adapted to the measured force as the robot should only move along the trajectory as long as the force applied by the user exceeds a minimum threshold. In the isotonic training scenario however, the robot’s acceleration is a function of the force applied by the user. To validate these findings, a simulative experiment with a simple linear trajectory is performed. For this purpose, the same force path is applied in both training scenarios. The results illustrate that the algorithms differ in the force dependent trajectory adaption. KW - Rehabilitation Technology and Prosthetics KW - Surgical Navigation and Robotics Y1 - 2018 U6 - https://doi.org/10.1515/cdbme-2018-0005 SN - 2364-5504 VL - 4 IS - 1 SP - 17 EP - 20 PB - De Gruyter CY - Berlin ER - TY - BOOK A1 - Staat, Manfred A1 - Digel, Ilya A1 - Trzewik, Jürgen A1 - Sielemann, Stefanie A1 - Erni, Daniel A1 - Zylka, Waldemar T1 - Symposium Proceedings; 4th YRA MedTech Symposium 2024 : February 1 / 2024 / FH Aachen Y1 - 2024 SN - 978-3-940402-65-3 U6 - https://doi.org/10.17185/duepublico/81475 PB - Universität Duisburg-Essen CY - Duisburg ER - TY - CHAP A1 - Simsek, Beril A1 - Krause, Hans-Joachim A1 - Engelmann, Ulrich M. ED - Digel, Ilya ED - Staat, Manfred ED - Trzewik, Jürgen ED - Sielemann, Stefanie ED - Erni, Daniel ED - Zylka, Waldemar T1 - Magnetic biosensing with magnetic nanoparticles: Simulative approach to predict signal intensity in frequency mixing magnetic detection T2 - YRA MedTech Symposium (2024) N2 - Magnetic nanoparticles (MNP) are investigated with great interest for biomedical applications in diagnostics (e.g. imaging: magnetic particle imaging (MPI)), therapeutics (e.g. hyperthermia: magnetic fluid hyperthermia (MFH)) and multi-purpose biosensing (e.g. magnetic immunoassays (MIA)). What all of these applications have in common is that they are based on the unique magnetic relaxation mechanisms of MNP in an alternating magnetic field (AMF). While MFH and MPI are currently the most prominent examples of biomedical applications, here we present results on the relatively new biosensing application of frequency mixing magnetic detection (FMMD) from a simulation perspective. In general, we ask how the key parameters of MNP (core size and magnetic anisotropy) affect the FMMD signal: by varying the core size, we investigate the effect of the magnetic volume per MNP; and by changing the effective magnetic anisotropy, we study the MNPs’ flexibility to leave its preferred magnetization direction. From this, we predict the most effective combination of MNP core size and magnetic anisotropy for maximum signal generation. Y1 - 2024 SN - 978-3-940402-65-3 U6 - https://doi.org/10.17185/duepublico/81475 N1 - 4th YRA MedTech Symposium, February 1, 2024. FH Aachen, Campus Jülich SP - 27 EP - 28 PB - Universität Duisburg-Essen CY - Duisburg ER - TY - CHAP A1 - Schmitz, Annika A1 - Apandi, Shah Eiman Amzar Shah A1 - Spillner, Jan A1 - Hima, Flutura A1 - Behbahani, Mehdi ED - Digel, Ilya ED - Staat, Manfred ED - Trzewik, Jürgen ED - Sielemann, Stefanie ED - Erni, Daniel ED - Zylka, Waldemar T1 - Effect of different cannula positions in the pulmonary artery on blood flow and gas exchange using computational fluid dynamics analysis T2 - YRA MedTech Symposium (2024) N2 - Pulmonary arterial cannulation is a common and effective method for percutaneous mechanical circulatory support for concurrent right heart and respiratory failure [1]. However, limited data exists to what effect the positioning of the cannula has on the oxygen perfusion throughout the pulmonary artery (PA). This study aims to evaluate, using computational fluid dynamics (CFD), the effect of different cannula positions in the PA with respect to the oxygenation of the different branching vessels in order for an optimal cannula position to be determined. The four chosen different positions (see Fig. 1) of the cannulas are, in the lower part of the main pulmonary artery (MPA), in the MPA at the junction between the right pulmonary artery (RPA) and the left pulmonary artery (LPA), in the RPA at the first branch of the RPA and in the LPA at the first branch of the LPA. Y1 - 2024 SN - 978-3-940402-65-3 U6 - https://doi.org/10.17185/duepublico/81475 N1 - 4th YRA MedTech Symposium, February 1, 2024. FH Aachen, Campus Jülich SP - 29 EP - 30 PB - Universität Duisburg-Essen CY - Duisburg ER - TY - JOUR A1 - Stäudle, Benjamin A1 - Seynnes, Olivier A1 - Laps, Guido A1 - Brüggemann, Gert-Peter A1 - Albracht, Kirsten T1 - Altered gastrocnemius contractile behavior in former achilles tendon rupture patients during walking JF - Frontiers in Physiology N2 - Achilles tendon rupture (ATR) remains associated with functional limitations years after injury. Architectural remodeling of the gastrocnemius medialis (GM) muscle is typically observed in the affected leg and may compensate force deficits caused by a longer tendon. Yet patients seem to retain functional limitations during—low-force—walking gait. To explore the potential limits imposed by the remodeled GM muscle-tendon unit (MTU) on walking gait, we examined the contractile behavior of muscle fascicles during the stance phase. In a cross-sectional design, we studied nine former patients (males; age: 45 ± 9 years; height: 180 ± 7 cm; weight: 83 ± 6 kg) with a history of complete unilateral ATR, approximately 4 years post-surgery. Using ultrasonography, GM tendon morphology, muscle architecture at rest, and fascicular behavior were assessed during walking at 1.5 m⋅s–1 on a treadmill. Walking patterns were recorded with a motion capture system. The unaffected leg served as control. Lower limbs kinematics were largely similar between legs during walking. Typical features of ATR-related MTU remodeling were observed during the stance sub-phases corresponding to series elastic element (SEE) lengthening (energy storage) and SEE shortening (energy release), with shorter GM fascicles (36 and 36%, respectively) and greater pennation angles (8° and 12°, respectively). However, relative to the optimal fascicle length for force production, fascicles operated at comparable length in both legs. Similarly, when expressed relative to optimal fascicle length, fascicle contraction velocity was not different between sides, except at the time-point of peak series elastic element (SEE) length, where it was 39 ± 49% lower in the affected leg. Concomitantly, fascicles rotation during contraction was greater in the affected leg during the whole stance-phase, and architectural gear ratios (AGR) was larger during SEE lengthening. Under the present testing conditions, former ATR patients had recovered a relatively symmetrical walking gait pattern. Differences in seen AGR seem to accommodate the profound changes in MTU architecture, limiting the required fascicle shortening velocity. Overall, the contractile behavior of the GM fascicles does not restrict length- or velocity-dependent force potentials during this locomotor task. KW - tendon rupture KW - muscle fascicle behavior KW - walking gait KW - force generation KW - ultrasound imaging Y1 - 2022 U6 - https://doi.org/10.3389/fphys.2022.792576 SN - 1664-042X VL - 13 PB - Frontiers Research Foundation CY - Lausanne ER - TY - JOUR A1 - Richter, Charlotte A1 - Braunstein, Bjoern A1 - Stäudle, Benjamin A1 - Attias, Julia A1 - Suess, Alexander A1 - Weber, Tobias A1 - Mileva, Katja N. A1 - Rittweger, Joern A1 - Green, David A. A1 - Albracht, Kirsten T1 - Gastrocnemius medialis contractile behavior is preserved during 30% body weight supported gait training JF - Frontiers in Sports and Active Living N2 - Rehabilitative body weight supported gait training aims at restoring walking function as a key element in activities of daily living. Studies demonstrated reductions in muscle and joint forces, while kinematic gait patterns appear to be preserved with up to 30% weight support. However, the influence of body weight support on muscle architecture, with respect to fascicle and series elastic element behavior is unknown, despite this having potential clinical implications for gait retraining. Eight males (31.9 ± 4.7 years) walked at 75% of the speed at which they typically transition to running, with 0% and 30% body weight support on a lower-body positive pressure treadmill. Gastrocnemius medialis fascicle lengths and pennation angles were measured via ultrasonography. Additionally, joint kinematics were analyzed to determine gastrocnemius medialis muscle–tendon unit lengths, consisting of the muscle's contractile and series elastic elements. Series elastic element length was assessed using a muscle–tendon unit model. Depending on whether data were normally distributed, a paired t-test or Wilcoxon signed rank test was performed to determine if body weight supported walking had any effects on joint kinematics and fascicle–series elastic element behavior. Walking with 30% body weight support had no statistically significant effect on joint kinematics and peak series elastic element length. Furthermore, at the time when peak series elastic element length was achieved, and on average across the entire stance phase, muscle–tendon unit length, fascicle length, pennation angle, and fascicle velocity were unchanged with respect to body weight support. In accordance with unchanged gait kinematics, preservation of fascicle–series elastic element behavior was observed during walking with 30% body weight support, which suggests transferability of gait patterns to subsequent unsupported walking. KW - AlterG KW - rehabilitation KW - gait KW - walking KW - ultrasound imaging KW - series elastic element behavior KW - muscle fascicle behavior KW - unloading Y1 - 2021 U6 - https://doi.org/10.3389/fspor.2020.614559 SN - 2624-9367 VL - 2021 IS - 2 PB - Frontiers CY - Lausanne ER -