TY - JOUR A1 - Alnemer, Momin Sami Mohammad A1 - Kotliar, Konstantin A1 - Neuhaus, Valentin A1 - Pape, Hans-Christoph A1 - Ciritsis, Bernhard D. T1 - Cost-effectiveness analysis of surgical proximal femur fracture prevention in elderly: a Markov cohort simulation model JF - Cost Effectiveness and Resource Allocation N2 - Background Hip fractures are a common and costly health problem, resulting in significant morbidity and mortality, as well as high costs for healthcare systems, especially for the elderly. Implementing surgical preventive strategies has the potential to improve the quality of life and reduce the burden on healthcare resources, particularly in the long term. However, there are currently limited guidelines for standardizing hip fracture prophylaxis practices. Methods This study used a cost-effectiveness analysis with a finite-state Markov model and cohort simulation to evaluate the primary and secondary surgical prevention of hip fractures in the elderly. Patients aged 60 to 90 years were simulated in two different models (A and B) to assess prevention at different levels. Model A assumed prophylaxis was performed during the fracture operation on the contralateral side, while Model B included individuals with high fracture risk factors. Costs were obtained from the Centers for Medicare & Medicaid Services, and transition probabilities and health state utilities were derived from available literature. The baseline assumption was a 10% reduction in fracture risk after prophylaxis. A sensitivity analysis was also conducted to assess the reliability and variability of the results. Results With a 10% fracture risk reduction, model A costs between $8,850 and $46,940 per quality-adjusted life-year ($/QALY). Additionally, it proved most cost-effective in the age range between 61 and 81 years. The sensitivity analysis established that a reduction of ≥ 2.8% is needed for prophylaxis to be definitely cost-effective. The cost-effectiveness at the secondary prevention level was most sensitive to the cost of the contralateral side’s prophylaxis, the patient’s age, and fracture treatment cost. For high-risk patients with no fracture history, the cost-effectiveness of a preventive strategy depends on their risk profile. In the baseline analysis, the incremental cost-effectiveness ratio at the primary prevention level varied between $11,000/QALY and $74,000/QALY, which is below the defined willingness to pay threshold. Conclusion Due to the high cost of hip fracture treatment and its increased morbidity, surgical prophylaxis strategies have demonstrated that they can significantly relieve the healthcare system. Various key assumptions facilitated the modeling, allowing for adequate room for uncertainty. Further research is needed to evaluate health-state-associated risks. KW - Hip fractures KW - Prevention KW - Geriatric KW - Cost-effectiveness KW - Prophylaxis Y1 - 2023 U6 - https://doi.org/10.1186/s12962-023-00482-4 SN - 1478-7547 N1 - Corresponding author: Momin S. Alnemer IS - 21, Article number: 77 PB - Springer Nature ER - TY - JOUR A1 - Janus, Kevin Alexander A1 - Achtsnicht, Stefan A1 - Drinic, Aleksander A1 - Kopp, Alexander A1 - Keusgen, Michael A1 - Schöning, Michael Josef T1 - Transient magnesium-based thin-film temperature sensor on a flexible, bioabsorbable substrate for future medical applications JF - Applied Research N2 - In this work, the bioabsorbable materials, namely fibroin, polylactide acid (PLA), magnesium and magnesium oxide are investigated for their application as transient, resistive temperature detectors (RTD). For this purpose, a thin-film magnesium-based meander-like electrode is deposited onto a flexible, bioabsorbable substrate (fibroin or PLA) and encapsulated (passivated) by additional magnesium oxide layers on top and below the magnesium-based electrode. The morphology of different layered RTDs is analyzed by scanning electron microscopy. The sensor performance and lifetime of the RTD is characterized both under ambient atmospheric conditions between 30°C and 43°C, and wet tissue-like conditions with a constant temperature regime of 37°C. The latter triggers the degradation process of the magnesium-based layers. The 3-layers RTDs on a PLA substrate could achieve a lifetime of 8.5 h. These sensors also show the best sensor performance under ambient atmospheric conditions with a mean sensitivity of 0.48 Ω/°C ± 0.01 Ω/°C. KW - Silk fibroin KW - Polylactide acid KW - Bioabsorbable KW - Resistive temperature detector Y1 - 2023 U6 - https://doi.org/10.1002/appl.202300102 SN - 2702-4288 (Print) N1 - Corresponding author: Michael Josef Schöning IS - Accepted manuscript PB - Wiley-VCH ER - TY - JOUR A1 - Karschuck, Tobias A1 - Schmidt, Stefan A1 - Achtsnicht, Stefan A1 - Poghossian, Arshak A1 - Wagner, Patrick A1 - Schöning, Michael Josef T1 - Multiplexing system for automated characterization of a capacitive field-effect sensor array JF - Physica Status Solidi A N2 - In comparison to single-analyte devices, multiplexed systems for a multianalyte detection offer a reduced assay time and sample volume, low cost, and high throughput. Herein, a multiplexing platform for an automated quasi-simultaneous characterization of multiple (up to 16) capacitive field-effect sensors by the capacitive–voltage (C–V) and the constant-capacitance (ConCap) mode is presented. The sensors are mounted in a newly designed multicell arrangement with one common reference electrode and are electrically connected to the impedance analyzer via the base station. A Python script for the automated characterization of the sensors executes the user-defined measurement protocol. The developed multiplexing system is tested for pH measurements and the label-free detection of ligand-stabilized, charged gold nanoparticles. KW - Capacitive field-effect sensor KW - Gold nanoparticles KW - Label-free detection KW - Multicell KW - Multiplexing Y1 - 2023 U6 - https://doi.org/10.1002/pssa.202300265 SN - 1862-6300 (Print) SN - 1862-6319 (Online) N1 - Corresponding author: Michael Josef Schöning VL - 220 IS - 22 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Ayala, Rafael Ceja A1 - Harris, Isaac A1 - Kleefeld, Andreas A1 - Pallikarakis, Nikolaos T1 - Analysis of the transmission eigenvalue problem with two conductivity parameters JF - Applicable Analysis N2 - In this paper, we provide an analytical study of the transmission eigenvalue problem with two conductivity parameters. We will assume that the underlying physical model is given by the scattering of a plane wave for an isotropic scatterer. In previous studies, this eigenvalue problem was analyzed with one conductive boundary parameter whereas we will consider the case of two parameters. We prove the existence and discreteness of the transmission eigenvalues as well as study the dependence on the physical parameters. We are able to prove monotonicity of the first transmission eigenvalue with respect to the parameters and consider the limiting procedure as the second boundary parameter vanishes. Lastly, we provide extensive numerical experiments to validate the theoretical work. KW - Transmission Eigenvalues KW - Conductive Boundary Condition KW - Inverse Scattering Y1 - 2023 U6 - https://doi.org/10.1080/00036811.2023.2181167 SN - 0003-6811 PB - Taylor & Francis ER - TY - CHAP A1 - Maurer, Florian A1 - Miskiw, Kim K. A1 - Acosta, Rebeca Ramirez A1 - Harder, Nick A1 - Sander, Volker A1 - Lehnhoff, Sebastian ED - Jorgensen, Bo Norregaard ED - Pereira da Silva, Luiz Carlos ED - Ma, Zheng T1 - Market abstraction of energy markets and policies - application in an agent-based modeling toolbox T2 - EI.A 2023: Energy Informatics N2 - In light of emerging challenges in energy systems, markets are prone to changing dynamics and market design. Simulation models are commonly used to understand the changing dynamics of future electricity markets. However, existing market models were often created with specific use cases in mind, which limits their flexibility and usability. This can impose challenges for using a single model to compare different market designs. This paper introduces a new method of defining market designs for energy market simulations. The proposed concept makes it easy to incorporate different market designs into electricity market models by using relevant parameters derived from analyzing existing simulation tools, morphological categorization and ontologies. These parameters are then used to derive a market abstraction and integrate it into an agent-based simulation framework, allowing for a unified analysis of diverse market designs. Furthermore, we showcase the usability of integrating new types of long-term contracts and over-the-counter trading. To validate this approach, two case studies are demonstrated: a pay-as-clear market and a pay-as-bid long-term market. These examples demonstrate the capabilities of the proposed framework. KW - Energy market design KW - Agent-based simulation KW - Market modeling Y1 - 2023 SN - 978-3-031-48651-7 (Print) SN - 978-3-031-48652-4 (eBook) U6 - https://doi.org/10.1007/978-3-031-48652-4_10 N1 - Energy Informatics Academy Conference, 6-8 December 23, Campinas, Brazil. N1 - Part of the Lecture Notes in Computer Science book series (LNCS,volume 14468). SP - 139 EP - 157 PB - Springer CY - Cham ER -