TY - JOUR A1 - Siqueira, José R. Jr. A1 - Bäcker, Matthias A1 - Poghossian, Arshak A1 - Zucolotto, Valtencir A1 - Oliveira, Osvaldo N. Jr. A1 - Schöning, Michael Josef T1 - Associating biosensing properties with the morphological structure of multilayers containing carbon nanotubes on field-effect devices JF - Physica Status Solidi (A) N2 - The control of molecular architecture provided by the layer-by-layer (LbL) technique has led to enhanced biosensors, in which advantageous features of distinct materials can be combined. Full optimization of biosensing performance, however, is only reached if the film morphology is suitable for the principle of detection of a specific biosensor. In this paper, we report a detailed morphology analysis of LbL films made with alternating layers of single-walled carbon nanotubes (SWNTs) and polyamidoamine (PAMAM) dendrimers, which were then covered with a layer of penicillinase (PEN). An optimized performance to detect penicillin G was obtained with 6-bilayer SWNT/PAMAM LbL films deposited on p-Si-SiO2-Ta2O5 chips, used in biosensors based on a capacitive electrolyte-insulator-semiconductor (EIS) and a light-addressable potentiometric sensor (LAPS) structure, respectively. Field-emission scanning electron microscopy (FESEM) and atomic force microscopy (AFM) images indicated that the LbL films were porous, with a large surface area due to interconnection of SWNT into PAMAM layers. This morphology was instrumental for the adsorption of a larger quantity of PEN, with the resulting LbL film being highly stable. The experiments to detect penicillin were performed with constant-capacitance (ConCap) and constant-current (CC) measurements for EIS and LAPS sensors, respectively, which revealed an enhanced detection signal and sensitivity of ca. 100 mV/decade for the field-effect sensors modified with the PAMAM/SWNT LbL film. It is concluded that controlling film morphology is essential for an enhanced performance of biosensors, not only in terms of sensitivity but also stability and response time. Y1 - 2010 U6 - https://doi.org/10.1002/pssa.200983301 SN - 1862-6300 N1 - Special Issue: Engineering of Functional Interfaces EnFI 2009 VL - 207 IS - 4 SP - 781 EP - 786 PB - Wiley-VCH CY - Berlin ER - TY - JOUR A1 - Huck, Christina A1 - Poghossian, Arshak A1 - Bäcker, Matthias A1 - Reisert, Steffen A1 - Schubert, J. A1 - Zander, W. A1 - Begoyan, Vardges K. A1 - Buniatyan, V. V. A1 - Schöning, Michael Josef T1 - Chemical sensors based on a high-k perovskite oxide of barium strontium titanate JF - Procedia Engineering N2 - High-k perovskite oxide of barium strontium titanate (BST) represents a very attractive multi-functional transducer material for the development of (bio-)chemical sensors for liquids. In this work, BST films have been applied as a sensitive transducer material for a label-free detection of adsorbed charged macromolecules (positively charged polyelectrolytes) and concentration of hydrogen peroxide vapor as well as protection insulator layer for a contactless electrolyte-conductivity sensor. The experimental results of characterization of individual sensors are presented. Special emphasis is devoted towards the development of a capacitively-coupled contactless electrolyte-conductivity sensor. KW - barium strontium titanate KW - high-k material KW - contactless conductivity sensor KW - multi-functional material KW - hydrogen peroxide Y1 - 2014 U6 - https://doi.org/10.1016/j.proeng.2014.11.258 SN - 1877-7058 N1 - EUROSENSORS 2014 ; European Conference on Solid-State Transducers <28, 2014> VL - 87 SP - 28 EP - 31 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Behbahani, Mehdi A1 - Tran, L. A1 - Waluga, C. A1 - Behr, Marek A1 - Oedekoven, B. A1 - Mottaghy, K. T1 - Model-based Numerical Analysis of Platelet Adhesion, Thrombus Growth and Aggregation for Assist Devices JF - The International Journal of Artificial Organs. 32 (2009), H. 7 Y1 - 2009 SN - 0391-3988 N1 - Abstracts - Oral Presentations: XXXVI Annual ESAO Congress, 2-5 September 2009, Compiègne - France; European Society of Artificial Organs (ESAO), Compiegne, France, September 2-5, 2009 SP - 398 EP - 398 ER - TY - JOUR A1 - Schöning, Michael Josef A1 - Schaub, A. A1 - Zundel, A. A1 - Beckers, Leah A1 - Schubert, J. A1 - Zander, W. A1 - Kordos, P. A1 - Lüth, H. T1 - Pulsed laser deposition as a novel thin film preparation method for silicon-based field effect sensors JF - Proceedings of the 25th European Solid State Device Research Conference : the Netherlands Congress Centre, The Hague, the Netherlands, 25th - 27th September 1995 / ESSDERC '95. Ed. by H. C. de Graaff Y1 - 1995 SN - 2-86332-182-X N1 - ESSDERC ; (25, 1995, 's-Gravenhage) ; European Solid State Device Research Conference (ESSDERC) ; (25 : ; 1995.09.25-27 : ; Den Haag) SP - 601 EP - 604 PB - Ed. Frontières CY - Gif-sur-Yvette ER - TY - JOUR A1 - Behbahani, Mehdi A1 - Behr, Marek A1 - Arora, D. A1 - Coronado, O. A1 - Pasquali, M. T1 - CFD Analysis of MicroMed Debakey Pump and Hemolysis Prediction / Behbahani, M. ; Behr, M. ; Arora, D. ; Coronado, O. ; Pasquali, M. JF - Artificial Organs. 30 (2006), H. 11 Y1 - 2006 SN - 1525-1594 N1 - Abstracts 14th Congress of the International Society for Rotary Blood Pumps, Leuven, Belgium, August 31–September 2, 2006 ; S7-4 SP - A45 EP - A46 ER - TY - JOUR A1 - Behbahani, Mehdi A1 - Behr, Marek A1 - Hormes, M. A1 - Steinseifer, U. A1 - Arora, D. A1 - Coronado, O. A1 - Pasquali, M. T1 - A Review of Computational Fluid Dynamics Analysis of Blood Pumps JF - European Journal of Applied Mathematics. 20 (2009), H. 4 Y1 - 2009 SP - 363 EP - 397 PB - Cambridge Univ. Press CY - Cambridge ER - TY - JOUR A1 - Behbahani, Mehdi A1 - Tran, L. A1 - Jockenhövel, S. A1 - Behr, Marek A1 - Mottaghy, K. T1 - Numerical prediction of thrombocyte reactions for application to a vascular flow model JF - British Journal of Surgery Y1 - 2011 SN - 1365-2168 N1 - 46th Congress of the European Society for Surgical Research, Aachen, Germany, 25-28 May 2011 ; ESSR Abstracts 2011 ; Oral Sessions OP10-5 VL - 98 IS - S5 SP - S17 PB - Oxford University Press CY - Oxford ER - TY - JOUR A1 - Nam, J. A1 - Arora, D. A1 - Behbahani, Mehdi A1 - Probst, M. A1 - Benkowski, R. A1 - Behr, Marek A1 - Pasquali, M. T1 - New computational method in hemolysis analysis for artificial heart pump Y1 - 2010 N1 - Posterpresentation ; American Society of Artificial Organs (ASAIO), Baltimore, USA, May 27-29, 2010 ER - TY - JOUR A1 - Ullrich, Sebastian A1 - Grottke, Oliver A1 - Rossaint, Rolf A1 - Staat, Manfred A1 - Deserno, Thomas M. A1 - Kuhlen, Torsten T1 - Virtual Needle Simulation with Haptics for Regional Anaesthesia Y1 - 2010 N1 - IEEE Virtual Reality 2010, Workshop on Medical Virtual Environments, Waltham, MA, USA, March 21, 2010 ER - TY - JOUR A1 - Behbahani, Mehdi A1 - Waluga, C. A1 - Arlt, S. A1 - Behr, Marek A1 - Mottaghy, K. T1 - Computational Analysis of Platelet Aggregation in a Taylor-Couette System JF - The International Journal of Artificial Organs. 31 (2008), H. 7 Y1 - 2008 SN - 0391-3988 N1 - Posterpresentation ; European Society of Artificial Organs (ESAO), Geneva, Switzerland SP - 643 ER - TY - JOUR A1 - Probst, M. A1 - Behbahani, Mehdi A1 - Borrmann, E. A1 - Elgeti, S. A1 - Nicolai, M. A1 - Behr, Marek T1 - Hemodynamic Modeling for Numerical Analysis and Design of Medical Devices Y1 - 2010 N1 - Posterpresentation ; NIC Symposium 2010 ; 24 - 25 February 2010 Jülich, Germany ER - TY - JOUR A1 - Behbahani, Mehdi A1 - Mai, A. A1 - Bergmann, B. A1 - Waluga, C. A1 - Behr, Marek A1 - Tran, L. A1 - Vonderstein, K. A1 - Mottaghy, K. T1 - Modeling and Numerical Simulation of Blood Damage Y1 - 2010 N1 - Posterpresentation ; Umbrella Symposium "Modelling and Simulation in Medicine, Engineering and Sciences", Forschungszentrum Jülich, January 18-20, 2010 ER - TY - JOUR A1 - Behbahani, Mehdi A1 - Probst, M. A1 - Mai, A. A1 - Behr, Marek A1 - Tran, L. A1 - Vonderstein, K. A1 - Mottaghy, K. T1 - Numerical Prediction of Blood Damage in Biomedical Devices Y1 - 2010 N1 - Posterpresentation ; Biomedica Congress, Aachen, March 17-18, 2010 ER - TY - JOUR A1 - Behbahani, Mehdi A1 - Waluga, C. A1 - Stock, S. A1 - Mai, A. A1 - Bergmann, B. A1 - Behr, Marek A1 - Tran, L. A1 - Vonderstein, K. A1 - Scheidt, H. A1 - Oedekoven, B. A1 - Mottaghy, K. T1 - Modelling and Numerical Analysis of Platelet Reactions and Surface Thrombus Growth Y1 - 2009 N1 - Posterpresentation ; European Society of Biomaterials (ESB), Lausanne, Switzerland, September 7-10, 2009 ER - TY - JOUR A1 - Martín-Vaquero, J. A1 - Kleefeld, Andreas T1 - Solving nonlinear parabolic PDEs in several dimensions: Parallelized ESERK codes JF - Journal of Computational Physics N2 - There is a very large number of very important situations which can be modeled with nonlinear parabolic partial differential equations (PDEs) in several dimensions. In general, these PDEs can be solved by discretizing in the spatial variables and transforming them into huge systems of ordinary differential equations (ODEs), which are very stiff. Therefore, standard explicit methods require a large number of iterations to solve stiff problems. But implicit schemes are computationally very expensive when solving huge systems of nonlinear ODEs. Several families of Extrapolated Stabilized Explicit Runge-Kutta schemes (ESERK) with different order of accuracy (3 to 6) are derived and analyzed in this work. They are explicit methods, with stability regions extended, along the negative real semi-axis, quadratically with respect to the number of stages s, hence they can be considered to solve stiff problems much faster than traditional explicit schemes. Additionally, they allow the adaptation of the step length easily with a very small cost. Two new families of ESERK schemes (ESERK3 and ESERK6) are derived, and analyzed, in this work. Each family has more than 50 new schemes, with up to 84.000 stages in the case of ESERK6. For the first time, we also parallelized all these new variable step length and variable number of stages algorithms (ESERK3, ESERK4, ESERK5, and ESERK6). These parallelized strategies allow to decrease times significantly, as it is discussed and also shown numerically in two problems. Thus, the new codes provide very good results compared to other well-known ODE solvers. Finally, a new strategy is proposed to increase the efficiency of these schemes, and it is discussed the idea of combining ESERK families in one code, because typically, stiff problems have different zones and according to them and the requested tolerance the optimum order of convergence is different. KW - Multi-dimensional partial differential equations KW - Higher-order codes KW - Nonlinear PDEs Y1 - 2020 U6 - https://doi.org/10.1016/j.jcp.2020.109771 SN - 0021-9991 IS - 423 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Uysal, Karya A1 - Firat, Ipek Serat A1 - Creutz, Till A1 - Aydin, Inci Cansu A1 - Artmann, Gerhard A1 - Teusch, Nicole A1 - Temiz Artmann, Aysegül T1 - A novel in vitro wound healing assay using free-standing, ultra-thin PDMS membranes JF - membranes N2 - Advances in polymer science have significantly increased polymer applications in life sciences. We report the use of free-standing, ultra-thin polydimethylsiloxane (PDMS) membranes, called CellDrum, as cell culture substrates for an in vitro wound model. Dermal fibroblast monolayers from 28- and 88-year-old donors were cultured on CellDrums. By using stainless steel balls, circular cell-free areas were created in the cell layer (wounding). Sinusoidal strain of 1 Hz, 5% strain, was applied to membranes for 30 min in 4 sessions. The gap circumference and closure rate of un-stretched samples (controls) and stretched samples were monitored over 4 days to investigate the effects of donor age and mechanical strain on wound closure. A significant decrease in gap circumference and an increase in gap closure rate were observed in trained samples from younger donors and control samples from older donors. In contrast, a significant decrease in gap closure rate and an increase in wound circumference were observed in the trained samples from older donors. Through these results, we propose the model of a cell monolayer on stretchable CellDrums as a practical tool for wound healing research. The combination of biomechanical cell loading in conjunction with analyses such as gene/protein expression seems promising beyond the scope published here. Y1 - 2022 U6 - https://doi.org/10.3390/membranes13010022 N1 - This article belongs to the Special Issue "Latest Scientific Discoveries in Polymer Membranes" VL - 2023 IS - 13(1) PB - MDPI CY - Basel ER - TY - JOUR A1 - Baringhaus, Ludwig A1 - Gaigall, Daniel A1 - Thiele, Jan Philipp T1 - Statistical inference for L²-distances to uniformity JF - Computational Statistics N2 - The paper deals with the asymptotic behaviour of estimators, statistical tests and confidence intervals for L²-distances to uniformity based on the empirical distribution function, the integrated empirical distribution function and the integrated empirical survival function. Approximations of power functions, confidence intervals for the L²-distances and statistical neighbourhood-of-uniformity validation tests are obtained as main applications. The finite sample behaviour of the procedures is illustrated by a simulation study. KW - Integrated empirical distribution (survival) function KW - Goodness-of-fit tests for uniformity KW - Numerical inversion of Laplace transforms KW - Coverage probability KW - Equivalence test Y1 - 2018 U6 - https://doi.org/10.1007/s00180-018-0820-0 SN - 1613-9658 VL - 2018 IS - 33 SP - 1863 EP - 1896 PB - Springer CY - Berlin ER - TY - JOUR A1 - Kleefeld, Andreas T1 - The hot spots conjecture can be false: some numerical examples JF - Advances in Computational Mathematics N2 - The hot spots conjecture is only known to be true for special geometries. This paper shows numerically that the hot spots conjecture can fail to be true for easy to construct bounded domains with one hole. The underlying eigenvalue problem for the Laplace equation with Neumann boundary condition is solved with boundary integral equations yielding a non-linear eigenvalue problem. Its discretization via the boundary element collocation method in combination with the algorithm by Beyn yields highly accurate results both for the first non-zero eigenvalue and its corresponding eigenfunction which is due to superconvergence. Additionally, it can be shown numerically that the ratio between the maximal/minimal value inside the domain and its maximal/minimal value on the boundary can be larger than 1 + 10− 3. Finally, numerical examples for easy to construct domains with up to five holes are provided which fail the hot spots conjecture as well. KW - Numerics KW - Boundary integral equations KW - Potential theory KW - Helmholtz equation KW - Interior Neumann eigenvalues Y1 - 2021 U6 - https://doi.org/10.1007/s10444-021-09911-5 SN - 1019-7168 VL - 47 PB - Springer CY - Dordrecht ER - TY - JOUR A1 - Ditzhaus, Marc A1 - Gaigall, Daniel T1 - A consistent goodness-of-fit test for huge dimensional and functional data JF - Journal of Nonparametric Statistics N2 - A nonparametric goodness-of-fit test for random variables with values in a separable Hilbert space is investigated. To verify the null hypothesis that the data come from a specific distribution, an integral type test based on a Cramér-von-Mises statistic is suggested. The convergence in distribution of the test statistic under the null hypothesis is proved and the test's consistency is concluded. Moreover, properties under local alternatives are discussed. Applications are given for data of huge but finite dimension and for functional data in infinite dimensional spaces. A general approach enables the treatment of incomplete data. In simulation studies the test competes with alternative proposals. KW - Cramér-von-Mises statistic KW - separable Hilbert space KW - huge dimensional data KW - functional data Y1 - 2018 U6 - https://doi.org/10.1080/10485252.2018.1486402 SN - 1029-0311 VL - 30 IS - 4 SP - 834 EP - 859 PB - Taylor & Francis CY - Abingdon ER - TY - JOUR A1 - Harris, Isaac A1 - Kleefeld, Andreas T1 - Analysis and computation of the transmission eigenvalues with a conductive boundary condition JF - Applicable Analysis N2 - We provide a new analytical and computational study of the transmission eigenvalues with a conductive boundary condition. These eigenvalues are derived from the scalar inverse scattering problem for an inhomogeneous material with a conductive boundary condition. The goal is to study how these eigenvalues depend on the material parameters in order to estimate the refractive index. The analytical questions we study are: deriving Faber–Krahn type lower bounds, the discreteness and limiting behavior of the transmission eigenvalues as the conductivity tends to infinity for a sign changing contrast. We also provide a numerical study of a new boundary integral equation for computing the eigenvalues. Lastly, using the limiting behavior we will numerically estimate the refractive index from the eigenvalues provided the conductivity is sufficiently large but unknown. KW - Boundary integral equations KW - Inverse spectral problem KW - Conductive boundary condition KW - Transmission eigenvalues Y1 - 2020 U6 - https://doi.org/10.1080/00036811.2020.1789598 SN - 1563-504X VL - 101 IS - 6 SP - 1880 EP - 1895 PB - Taylor & Francis CY - London ER -