TY - JOUR A1 - Bandlitz, Stefan A1 - Nakhoul, Makram A1 - Kotliar, Konstantin T1 - Daily variations of corneal white-to-white diameter measured with different methods JF - Clinical and experimental optometry N2 - Purpose: A precise determination of the corneal diameter is essential for the diagnosis of various ocular diseases, cataract and refractive surgery as well as for the selection and fitting of contact lenses. The aim of this study was to investigate the agreement between two automatic and one manual method for corneal diameter determination and to evaluate possible diurnal variations in corneal diameter. Patients and Methods: Horizontal white-to-white corneal diameter of 20 volunteers was measured at three different fixed times of a day with three methods: Scheimpflug method (Pentacam HR, Oculus), placido based topography (Keratograph 5M, Oculus) and manual method using an image analysis software at a slitlamp (BQ900, Haag-Streit). Results: The two-factorial analysis of variance could not show a significant effect of the different instruments (p = 0.117), the different time points (p = 0.506) and the interaction between instrument and time point (p = 0.182). Very good repeatability (intraclass correlation coefficient ICC, quartile coefficient of dispersion QCD) was found for all three devices. However, manual slitlamp measurements showed a higher QCD than the automatic measurements with the Keratograph 5M and the Pentacam HR at all measurement times. Conclusion: The manual and automated methods used in the study to determine corneal diameter showed good agreement and repeatability. No significant diurnal variations of corneal diameter were observed during the period of time studied. Y1 - 2022 U6 - https://doi.org/10.2147/OPTO.S360651 SN - 0816-4622 IS - 14 SP - 173 EP - 181 PB - Taylor & Francis CY - London ER - TY - JOUR A1 - Lustfeld, Hans A1 - Pithan, C. A1 - Reißel, Martin T1 - Metallic electrolyte composites in the framework of the brick-layer model JF - Journal of the European Ceramic Society N2 - It is well known that the already large dielectric constants of some electrolytes like BaTiO₃ can be enhanced further by adding metallic (e.g. Ni, Cu or Ag) nanoparticles. The enhancement can be quite large, a factor of more than 1000 is possible. The consequences for the properties will be discussed in the present paper applying a brick-layer model (BLM) for calculating dc-resistivities of thin layers and a modified one (PBLM) that includes percolation for calculating dielectric properties of these materials. The PBLM results in an at least qualitative description and understanding of the physical phenomena: This model gives an explanation for the steep increase of the dielectric constant below the percolation threshold and why this increase is connected to a dramatic decrease of the breakdown voltage as well as the ability of storing electrical energy. We conclude that metallic electrolyte composites like BaTiO₃ are not appropriate for energy storage. Y1 - 2012 U6 - https://doi.org/10.1016/j.jeurceramsoc.2011.10.017 SN - 0955-2219 VL - 32 IS - 4 SP - 859 EP - 864 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Staat, Manfred A1 - Sponagel, Stefan A1 - Nguyen, Nhu Huynh T1 - Experiment and material model for soft tissue materials JF - Constitutive models for rubber VI N2 - Biomechanics studies biological soft tissue materials (growth, remodeling) in vivo. For this objective, the detailed information of material properties must be well defined to construct reliable constitutive models. In the paper, the bulge test is carried out with elastomers in order to develop a test method. Then, application of the test for soft tissue materials is straightforward due to the similarities between elastomers with soft tissue materials as proved in Holzapfel 2005, Ogden 2009. It means, after the preliminary experiments and parameter identification with rubber materials has been setup, experiments on soft tissue materials can be similarly carried out. Elastomers have a complex behavior which strongly depends on the largest previous load cycle. For simplicity we consider only the first loading. Y1 - 2010 SN - 9780429206597 (eBook) U6 - https://doi.org/10.1201/NOE0415563277-90 PB - Taylor & Francis CY - London ER - TY - JOUR A1 - Kotliar, Konstantin A1 - Hanssen, Henner A1 - Eberhardt, Karla A1 - Vilser, Walthard A1 - Schmaderer, Christoph A1 - Halle, Martin A1 - Heemann, Uwe A1 - Baumann, Marcus T1 - Retinal pulse wave velocity in young male normotensive and mildly hypertensive subjects JF - Microcirculation Y1 - 2013 SN - 1549-8719 N1 - Accepted Article (Accepted, unedited articles published online and citable. The final edited and typeset version of record will appear in future.) PB - Wiley CY - Malden ER - TY - JOUR A1 - Kowalski, Julia A1 - Linder, Peter A1 - Zierke, S. A1 - Wulfen, B. van A1 - Clemens, J. A1 - Konstantinidis, K. A1 - Ameres, G. A1 - Hoffmann, R. A1 - Mikucki, J. A1 - Tulaczyk, S. A1 - Funke, O. A1 - Blandfort, D. A1 - Espe, Clemens A1 - Feldmann, Marco A1 - Francke, Gero A1 - Hiecker, S. A1 - Plescher, Engelbert A1 - Schöngarth, Sarah A1 - Dachwald, Bernd A1 - Digel, Ilya A1 - Artmann, Gerhard A1 - Eliseev, D. A1 - Heinen, D. A1 - Scholz, F. A1 - Wiebusch, C. A1 - Macht, S. A1 - Bestmann, U. A1 - Reineking, T. A1 - Zetzsche, C. A1 - Schill, K. A1 - Förstner, R. A1 - Niedermeier, H. A1 - Szumski, A. A1 - Eissfeller, B. A1 - Naumann, U. A1 - Helbing, K. T1 - Navigation technology for exploration of glacier ice with maneuverable melting probes JF - Cold Regions Science and Technology N2 - The Saturnian moon Enceladus with its extensive water bodies underneath a thick ice sheet cover is a potential candidate for extraterrestrial life. Direct exploration of such extraterrestrial aquatic ecosystems requires advanced access and sampling technologies with a high level of autonomy. A new technological approach has been developed as part of the collaborative research project Enceladus Explorer (EnEx). The concept is based upon a minimally invasive melting probe called the IceMole. The force-regulated, heater-controlled IceMole is able to travel along a curved trajectory as well as upwards. Hence, it allows maneuvers which may be necessary for obstacle avoidance or target selection. Maneuverability, however, necessitates a sophisticated on-board navigation system capable of autonomous operations. The development of such a navigational system has been the focal part of the EnEx project. The original IceMole has been further developed to include relative positioning based on in-ice attitude determination, acoustic positioning, ultrasonic obstacle and target detection integrated through a high-level sensor fusion. This paper describes the EnEx technology and discusses implications for an actual extraterrestrial mission concept. Y1 - 2016 U6 - https://doi.org/10.1016/j.coldregions.2015.11.006 SN - 0165-232X IS - 123 SP - 53 EP - 70 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Mikucki, Jill Ann A1 - Schuler, C. G. A1 - Digel, Ilya A1 - Kowalski, Julia A1 - Tuttle, M. J. A1 - Chua, Michelle A1 - Davis, R. A1 - Purcell, Alicia A1 - Ghosh, D. A1 - Francke, G. A1 - Feldmann, Marco A1 - Espe, C. A1 - Heinen, Dirk A1 - Dachwald, Bernd A1 - Clemens, Joachim A1 - Lyons, W. B. A1 - Tulaczyk, S. T1 - Field-Based planetary protection operations for melt probes: validation of clean access into the blood falls, antarctica, englacial ecosystem JF - Astrobiology N2 - Subglacial environments on Earth offer important analogs to Ocean World targets in our solar system. These unique microbial ecosystems remain understudied due to the challenges of access through thick glacial ice (tens to hundreds of meters). Additionally, sub-ice collections must be conducted in a clean manner to ensure sample integrity for downstream microbiological and geochemical analyses. We describe the field-based cleaning of a melt probe that was used to collect brine samples from within a glacier conduit at Blood Falls, Antarctica, for geomicrobiological studies. We used a thermoelectric melting probe called the IceMole that was designed to be minimally invasive in that the logistical requirements in support of drilling operations were small and the probe could be cleaned, even in a remote field setting, so as to minimize potential contamination. In our study, the exterior bioburden on the IceMole was reduced to levels measured in most clean rooms, and below that of the ice surrounding our sampling target. Potential microbial contaminants were identified during the cleaning process; however, very few were detected in the final englacial sample collected with the IceMole and were present in extremely low abundances (∼0.063% of 16S rRNA gene amplicon sequences). This cleaning protocol can help minimize contamination when working in remote field locations, support microbiological sampling of terrestrial subglacial environments using melting probes, and help inform planetary protection challenges for Ocean World analog mission concepts. Y1 - 2023 U6 - https://doi.org/10.1089/ast.2021.0102 SN - 1557-8070 (online) SN - 153-1074 (print) VL - 23 IS - 11 SP - 1165 EP - 1178 PB - Liebert CY - New York, NY ER - TY - JOUR A1 - Bäcker, Matthias A1 - Poghossian, Arshak A1 - Abouzar, Maryam H. A1 - Wenmackers, Sylvia A1 - Janssens, Stoffel D. A1 - Haenen, Ken A1 - Wagner, Patrick A1 - Schöning, Michael Josef T1 - Capacitive field-effect (bio-)chemical sensors based on nanocrystalline diamond films JF - MRS Online Proceedings Library N2 - Capacitive field-effect electrolyte-diamond-insulator-semiconductor (EDIS) structures with O-terminated nanocrystalline diamond (NCD) as sensitive gate material have been realized and investigated for the detection of pH, penicillin concentration, and layer-by-layer adsorption of polyelectrolytes. The surface oxidizing procedure of NCD thin films as well as the seeding and NCD growth process on a Si-SiO2 substrate have been improved to provide high pH-sensitive, non-porous thin films without damage of the underlying SiO2 layer and with a high coverage of O-terminated sites. The NCD surface topography, roughness, and coverage of the surface groups have been characterized by SEM, AFM and XPS methods. The EDIS sensors with O-terminated NCD film treated in oxidizing boiling mixture for 45 min show a pH sensitivity of about 50 mV/pH. The pH-sensitive properties of the NCD have been used to develop an EDIS-based penicillin biosensor with high sensitivity (65-70 mV/decade in the concentration range of 0.25-2.5 mM penicillin G) and low detection limit (5 μM). The results of label-free electrical detection of layer-by-layer adsorption of charged polyelectrolytes are presented, too. Y1 - 2010 SN - 1946-4274 VL - 1203 PB - MRS CY - Warrendale ER - TY - JOUR A1 - Pham, Phu Tinh A1 - Vu, Khoi Duc A1 - Tran, Thanh Ngoc A1 - Staat, Manfred T1 - A primal-dual algorithm for shakedown analysis of elastic-plastic bounded linearly kinematic hardening bodies Y1 - 2010 N1 - 4th European Conference on Computational Mechanics (Solids, Structures and Coupled Problems in Engineering), ECCOMAS ECCM 2010, Paris, France, May 17 – 21, 2010 ER - TY - JOUR A1 - Nguyen, N.-H. A1 - Raatschen, Hans-Jürgen A1 - Staat, Manfred T1 - A hyperelastic model of biological tissue materials in tubular organs Y1 - 2010 N1 - 4th European Conference on Computational Mechanics (Solids, Structures and Coupled Problems in Engineering), ECCOMAS ECCM 2010, Paris, France, May 17 – 21, 2010 ER - TY - JOUR A1 - Tran, Thanh Ngoc A1 - Staat, Manfred T1 - Shakedown analysis of two dimensional structures by an edge-based smoothed finite element method Y1 - 2010 N1 - 4th European Conference on Computational Mechanics (Solids, Structures and Coupled Problems in Engineering), ECCOMAS ECCM 2010, Paris, France, May 17 – 21, 2010 ER - TY - JOUR A1 - Wendlandt, Tim A1 - Koch, Claudia A1 - Britz, Beate A1 - Liedek, Anke A1 - Schmidt, Nora A1 - Werner, Stefan A1 - Gleba, Yuri A1 - Vahidpour, Farnoosh A1 - Welden, Melanie A1 - Poghossian, Arshak A1 - Schöning, Michael Josef T1 - Facile Purification and Use of Tobamoviral Nanocarriers for Antibody-Mediated Display of a Two-Enzyme System JF - Viruses N2 - Immunosorbent turnip vein clearing virus (TVCV) particles displaying the IgG-binding domains D and E of Staphylococcus aureus protein A (PA) on every coat protein (CP) subunit (TVCVPA) were purified from plants via optimized and new protocols. The latter used polyethylene glycol (PEG) raw precipitates, from which virions were selectively re-solubilized in reverse PEG concentration gradients. This procedure improved the integrity of both TVCVPA and the wild-type subgroup 3 tobamovirus. TVCVPA could be loaded with more than 500 IgGs per virion, which mediated the immunocapture of fluorescent dyes, GFP, and active enzymes. Bi-enzyme ensembles of cooperating glucose oxidase and horseradish peroxidase were tethered together on the TVCVPA carriers via a single antibody type, with one enzyme conjugated chemically to its Fc region, and the other one bound as a target, yielding synthetic multi-enzyme complexes. In microtiter plates, the TVCVPA-displayed sugar-sensing system possessed a considerably increased reusability upon repeated testing, compared to the IgG-bound enzyme pair in the absence of the virus. A high coverage of the viral adapters was also achieved on Ta2O5 sensor chip surfaces coated with a polyelectrolyte interlayer, as a prerequisite for durable TVCVPA-assisted electrochemical biosensing via modularly IgG-assembled sensor enzymes. KW - biosensor KW - horseradish peroxidase (HRP) KW - glucose oxidase (GOx) KW - enzyme cascade KW - turnip vein clearing virus (TVCV) KW - tobacco mosaic virus (TMV) Y1 - 2023 U6 - https://doi.org/doi.org/10.3390/v15091951 SN - 1999-4915 N1 - This article belongs to the Special Issue "Tobamoviruses 2023" VL - 9 IS - 15 PB - MDPI CY - Basel ER - TY - JOUR A1 - Bäcker, Matthias A1 - Koch, Claudia A1 - Eiben, Sabine A1 - Geiger, Fania A1 - Eber, Fabian A1 - Gliemann, Hartmut A1 - Poghossian, Arshak A1 - Wege, Christina A1 - Schöning, Michael Josef T1 - Tobacco mosaic virus as enzyme nanocarrier for electrochemical biosensors JF - Sensors and Actuators B: Chemical N2 - The conjunction of (bio-)chemical recognition elements with nanoscale biological building blocks such as virus particles is considered as a very promising strategy for the creation of biohybrids opening novel opportunities for label-free biosensing. This work presents a new approach for the development of biosensors using tobacco mosaic virus (TMV) nanotubes or coat proteins (CPs) as enzyme nanocarriers. Sensor chips combining an array of Pt electrodes loaded with glucose oxidase (GOD)-modified TMV nanotubes or CP aggregates were used for amperometric detection of glucose as a model system for the first time. The presence of TMV nanotubes or CPs on the sensor surface allows binding of a high amount of precisely positioned enzymes without substantial loss of their activity, and may also ensure accessibility of their active centers for analyte molecules. Specific and efficient immobilization of streptavidin-conjugated GOD ([SA]-GOD) complexes on biotinylated TMV nanotubes or CPs was achieved via bioaffinity binding. These layouts were tested in parallel with glucose sensors with adsorptively immobilized [SA]-GOD, as well as [SA]-GOD crosslinked with glutardialdehyde, and came out to exhibit superior sensor performance. The achieved results underline a great potential of an integration of virus/biomolecule hybrids with electronic transducers for future applications in biosensorics and biochips. Y1 - 2017 U6 - https://doi.org/10.1016/j.snb.2016.07.096 SN - 0925-4005 VL - 238 SP - 716 EP - 722 PB - Elsevier CY - Amsterdam ER - TY - CHAP A1 - Koch, Claudia A1 - Poghossian, Arshak A1 - Wege, Christina A1 - Schöning, Michael Josef ED - Wege, Christina T1 - TMV-Based Adapter Templates for Enhanced Enzyme Loading in Biosensor Applications T2 - Virus-Derived Nanoparticles for Advanced Technologies N2 - Nanotubular tobacco mosaic virus (TMV) particles and RNA-free lower-order coat protein (CP) aggregates have been employed as enzyme carriers in different diagnostic layouts and compared for their influence on biosensor performance. In the following, we describe a label-free electrochemical biosensor for improved glucose detection by use of TMV adapters and the enzyme glucose oxidase (GOD). A specific and efficient immobilization of streptavidin-conjugated GOD ([SA]-GOD) complexes on biotinylated TMV nanotubes or CP aggregates was achieved via bioaffinity binding. Glucose sensors with adsorptively immobilized [SA]-GOD, and with [SA]-GOD cross-linked with glutardialdehyde, respectively, were tested in parallel on the same sensor chip. Comparison of these sensors revealed that TMV adapters enhanced the amperometric glucose detection remarkably, conveying highest sensitivity, an extended linear detection range and fastest response times. These results underline a great potential of an integration of virus/biomolecule hybrids with electronic transducers for applications in biosensorics and biochips. Here, we describe the fabrication and use of amperometric sensor chips combining an array of circular Pt electrodes, their loading with GOD-modified TMV nanotubes (and other GOD immobilization methods), and the subsequent investigations of the sensor performance. KW - Tobacco mosaic virus (TMV) KW - Coat protein KW - Enzyme nanocarrier KW - Glucose biosensor KW - Glucose oxidase Y1 - 2018 SN - 978-1-4939-7808-3 U6 - https://doi.org/10.1007/978-1-4939-7808-3 N1 - Methods in Molecular Biology, vol 1776 SP - 553 EP - 568 PB - Humana Press CY - New York, NY ER - TY - JOUR A1 - Koch, Claudia A1 - Poghossian, Arshak A1 - Schöning, Michael Josef A1 - Wege, Christian T1 - Penicillin Detection by Tobacco Mosaic Virus-Assisted Colorimetric Biosensors JF - Nanotheranostics N2 - The presentation of enzymes on viral scaffolds has beneficial effects such as an increased enzyme loading and a prolonged reusability in comparison to conventional immobilization platforms. Here, we used modified tobacco mosaic virus (TMV) nanorods as enzyme carriers in penicillin G detection for the first time. Penicillinase enzymes were conjugated with streptavidin and coupled to TMV rods by use of a bifunctional biotin-linker. Penicillinase-decorated TMV particles were characterized extensively in halochromic dye-based biosensing. Acidometric analyte detection was performed with bromcresol purple as pH indicator and spectrophotometry. The TMV-assisted sensors exhibited increased enzyme loading and strongly improved reusability, and higher analysis rates compared to layouts without viral adapters. They extended the half-life of the sensors from 4 - 6 days to 5 weeks and thus allowed an at least 8-fold longer use of the sensors. Using a commercial budget-priced penicillinase preparation, a detection limit of 100 µM penicillin was obtained. Initial experiments also indicate that the system may be transferred to label-free detection layouts. Y1 - 2018 U6 - https://doi.org/10.7150/ntno.22114 SN - 2206-7418 VL - 2 IS - 2 SP - 184 EP - 196 PB - Ivyspring CY - Sydney ER - TY - BOOK A1 - Grotendorst, Johannes T1 - Hierarchical methods for dynamics in complex molecular systems T3 - Schriften des Forschungszentrums Jülich IAS Series 10 Y1 - 2012 SN - 978-3-89336-768-9 N1 - IAS Winter School, 5 – 9 March 2012, Forschungszentrum Jülich GmbH, Lecture Notes PB - Forschungszentrum Jülich CY - Jülich ER - TY - CHAP A1 - Jablonski, Melanie A1 - Koch, Claudia A1 - Bronder, Thomas A1 - Poghossian, Arshak A1 - Wege, Christina A1 - Schöning, Michael Josef T1 - Field-Effect Biosensors Modified with Tobacco Mosaic Virus Nanotubes as Enzyme Nanocarrier T2 - MDPI Proceeding Y1 - 2017 U6 - https://doi.org/10.3390/proceedings1040505 N1 - Eurosensors 2017 Conference, Paris, France, 3–6 September 2017 VL - 1 IS - 4 ER - TY - JOUR A1 - Beging, Stefan A1 - Mlynek, Daniela A1 - Hataihimakul, Sudkanung A1 - Poghossian, Arshak A1 - Baldsiefen, Gerhard A1 - Busch, Heinz A1 - Laube, Norbert A1 - Kleinen, Lisa A1 - Schöning, Michael Josef T1 - Field-effect calcium sensor for the determination of the risk of urinary stone formation JF - Sensors and Actuators B: Chemical N2 - Urinary stone formation has been evolved to a widespread disease during the last years. The reason for the formation of urinary stones are little crystals, mostly composed of calcium oxalate, which are formed in human kidneys. The early diagnosis of the risk for urinary stone formation of patients can be determined by the “Bonn-Risk-Index” method based on the potentiometric detection of the Ca2+-ion concentration and an optical determination of the triggered crystallisation of calcium oxalate in unprocessed urine. In this work, miniaturised capacitive field-effect EMIS (electrolyte-membrane-insulator-semiconductor) sensors have been developed for the determination of the Ca2+-ion concentration in human native urine. The Ca2+-sensitive EMIS sensors have been systematically characterised by impedance spectroscopy, capacitance–voltage and constant–capacitance method in terms of sensitivity, signal stability and response time in both CaCl2 solutions and in native urine. The obtained results demonstrate the suitability of EMIS sensors for the measurement of the Ca2+-ion concentration in native urine of patients. Y1 - 2010 U6 - https://doi.org/10.1016/j.snb.2008.12.012 SN - 0925-4005 N1 - 22nd International Conference on Eurosensors: Dresden, Germany, 7-10 September 2008 VL - 144 IS - 2 SP - 374 EP - 379 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Reisert, Steffen A1 - Henkel, Hartmut A1 - Schneider, Andreas A1 - Schäfer, Daniel A1 - Friedrich, Peter A1 - Berger, Jörg A1 - Schöning, Michael Josef T1 - Development of a handheld sensor system for the online measurement of hydrogen peroxide in aseptic filling systems JF - Physica Status Solidi (A) N2 - A handheld sensor system for the online measurement of hydrogen peroxide (H2O2) in aseptic sterilisation processes has been developed. It is based on a calorimetric-type gas sensor that consists of a differential set-up of two temperature sensors, of which one is catalytically activated and the second one is passivated and used as reference. The sensor principle relies in detecting a rise in temperature on the active sensor due to the exothermic reaction of H2O2 on the catalytic surface. To characterise the sensor system towards H2O2 sensitivity and other influencing factors, measurements have been carried out both at an experimental set-up and a manufacturer's sterilisation machine. Physical sensor characterisation was done by means of the optical microscopy. Y1 - 2010 U6 - https://doi.org/10.1002/pssa.200983304 SN - 1862-6300 N1 - Special Issue: Engineering of Functional Interfaces EnFI 2009 VL - 207 IS - 4 SP - 913 EP - 918 PB - Wiley-VCH CY - Berlin ER - TY - JOUR A1 - Miyamoto, Ko-ichiro A1 - Sugawara, Yuri A1 - Kanoh, Shin´ichiro A1 - Yoshinobu, Tatsuo A1 - Wagner, Torsten A1 - Schöning, Michael Josef T1 - Image correction method for the chemical imaging sensor JF - Sensors and Actuators B: Chemical N2 - The chemical imaging sensor is a semiconductor-based chemical sensor that can visualize the spatial distribution of chemical species. For the practical application of this sensor, artifacts in the chemical images due to defects of the semiconductor substrate and contamination of the sensing surface etc. have been a major problem. An image correction method was developed to eliminate the influence of nonuniformity of individual sensor plate. Y1 - 2010 U6 - https://doi.org/10.1016/j.snb.2008.10.069 SN - 0925-4005 N1 - 22nd International Conference on Eurosensors: Dresden, Germany, 7-10 September 2008 VL - 144 IS - 2 SP - 344 EP - 348 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Abouzar, Maryam H. A1 - Poghossian, Arshak A1 - Siqueira, José R. Jr. A1 - Oliveira, Osvaldo N. Jr. A1 - Moritz, Werner A1 - Schöning, Michael Josef T1 - Capacitive electrolyte-insulator-semiconductor structures functionalised with a polyelectrolyte/enzyme multilayer: New strategy for enhanced field-effect biosensing JF - Physica Status Solidi (A) N2 - A novel strategy for enhanced field-effect biosensing using capacitive electrolyte–insulator–semiconductor (EIS) structures functionalised with pH-responsive weak polyelectrolyte/enzyme or dendrimer/enzyme multilayers is presented. The feasibility of the proposed approach is exemplarily demonstrated by realising a penicillin biosensor based on a capacitive p-Si–SiO2 EIS structure functionalised with a poly(allylamine hydrochloride) (PAH)/penicillinase and a poly(amidoamine) dendrimer/penicillinase multilayer. The developed sensors response to changes in both the local pH value near the gate surface and the charge of macromolecules induced via enzymatic reaction, resulting in a higher sensitivity. For comparison, an EIS penicillin biosensor with adsorptively immobilised penicillinase has been also studied. The highest penicillin sensitivity of 100 mV/dec has been observed for the EIS sensor functionalised with the PAH/penicillinase multilayer. The lower and upper detection limit was around 20 µM and 10 mM, respectively. In addition, an incorporation of enzymes in a multilayer prepared by layer-by-layer technique provides a larger amount of immobilised enzymes per sensor area, reduces enzyme leaching effects and thus, enhances the biosensor lifetime (the loss of penicillin sensitivity after 2 months was 10–12%). Y1 - 2010 U6 - https://doi.org/10.1002/pssa.200983317 SN - 1862-6300 N1 - Special Issue: Engineering of Functional Interfaces EnFI 2009 VL - 207 IS - 4 SP - 884 EP - 890 PB - Wiley-VCH CY - Berlin ER -