TY - JOUR A1 - Leipold, M. A1 - Fichtner, H. A1 - Heber, B. A1 - Groepper, P. A1 - Lascar, S. A1 - Burger, F. A1 - Eiden, M. A1 - Niederstadt, T. A1 - Sickinger, C. A1 - Herbeck, L. A1 - Dachwald, Bernd A1 - Seboldt, Wolfgang T1 - Heliopause Explorer - A Sailcraft Mission to the Outer Boundaries of the Solar System JF - Acta Astronautica. 59 (2006), H. 8-11 Y1 - 2006 SN - 0094-5765 N1 - International Conference on Low Cost Planetary Missions <5, 2003, Noordwijk> ; Selected Proceedings SP - 786 EP - 796 ER - TY - JOUR A1 - Dachwald, Bernd A1 - Leipold, M. A1 - Fichtner, H. T1 - Heliopause Explorer - A Sailcraft Mission to the Outer Boundaries of the Solar System / M. Leipold ; H. Fichtner ; B. Heber ... B. Dachwald ... JF - Proceedings of the Fifth IAA International Conference on Low Cost Planetary Missions : 24 - 26 September 2003, ESTEC, Noordwijk, the Netherlands / [comp. by R. A. Harris] Y1 - 2003 SN - 92-9092-853-0 N1 - International Conference on Low Cost Planetary Missions <5, 2003, Noordwijk> ; International Academy of Astronautics ; European Space Research and Technology Centre SP - 367 EP - 375 PB - ESA CY - Noordwijk ER - TY - JOUR A1 - Probst, M. A1 - Behbahani, Mehdi A1 - Borrmann, E. A1 - Elgeti, S. A1 - Nicolai, M. A1 - Behr, M. T1 - Hemodynamic Modeling for Numerical Analysis and Design of Medical Devices Y1 - 2010 N1 - Posterpresentation ; NIC Symposium 2010 ; 24 - 25 February 2010 Jülich, Germany ER - TY - JOUR A1 - Stadler, A. M. A1 - Digel, Ilya A1 - Artmann, Gerhard A1 - Embs, Jan P. A1 - Zaccai, Joe A1 - Büldt, Georg T1 - Hemoglobin Dynamics in Red Blood Cells: Correlation to Body Temperature JF - Biophysical Journal. 95 (2008), H. 11 Y1 - 2008 SN - 1542-0086 SP - 5449 EP - 5461 ER - TY - JOUR A1 - Artmann, Gerhard A1 - Zerlin, Kay A1 - Digel, Ilya T1 - Hemoglobin Senses Body Temperature JF - Bioengineering in Cell and Tissue Research / Artmann, Gerhard M. ; Chien, Shu (Eds.) Y1 - 2008 SN - 978-3-540-75408-4 SP - 415 EP - 447 PB - Springer CY - Berlin ER - TY - JOUR A1 - Artmann, Gerhard A1 - Digel, Ilya A1 - Zerlin, Kay A1 - Maggakis-Kelemen, Christina A1 - Linder, Peter A1 - Porst, Dariusz A1 - Kayser, Peter A1 - Stadler, David A1 - Dikta, Gerhard A1 - Temiz Artmann, Aysegül T1 - Hemoglobin senses body temperature JF - European Biophysics Journal Y1 - 2009 SN - 0175-7571 VL - 38 IS - 5 SP - 589 EP - 600 ER - TY - CHAP A1 - Digel, Ilya A1 - Mansurov, Zulkhair A1 - Biisenbaev, Makhmut A1 - Savitskaya, Irina A1 - Kistaubaeva, Aida A1 - Akimbekov, Nuraly S. A1 - Zhubanova, Azhar ED - Hu, Ning T1 - Heterogeneous Composites on the Basis of Microbial Cells and Nanostructured Carbonized Sorbents T2 - Composites and Their Applications N2 - The fact that microorganisms prefer to grow on liquid/solid phase surfaces rather than in the surrounding aqueous phase was noticed long time ago [1]. Virtually any surface – animal, mineral, or vegetable – is a subject for microbial colonization and subsequent biofilm formation. It would be adequate to name just a few notorious examples on microbial colonization of contact lenses, ship hulls, petroleum pipelines, rocks in streams and all kinds of biomedical implants. The propensity of microorganisms to become surface-bound is so profound and ubiquitous that it vindicates the advantages for attached forms over their free-ranging counterparts [2]. Indeed, from ecological and evolutionary standpoints, for many microorganisms the surface-bound state means dwelling in nutritionally favorable, non-hostile environments [3]. Therefore, in most of natural and artificial ecosystems surface-associated microorganisms vastly outnumber organisms in suspension and often organize into complex communities with features that differ dramatically from those of free cells [4]. Y1 - 2012 SN - 978-953-51-0706-4 U6 - https://doi.org/10.5772/47796 SP - 249 EP - 272 PB - Intech CY - London ER - TY - JOUR A1 - Linder, Peter A1 - Digel, Ilya A1 - Temiz Artmann, Aysegül A1 - Kayser, Peter A1 - Porst, Dariusz A1 - Artmann, Gerhard T1 - High-throughput testing of mechanical forces generated in thin cell and tissue layers JF - Tissue Engineering. 13 (2007), H. 7 Y1 - 2007 SN - 1076-3279 N1 - Meeting abstract 433 SP - 1778 EP - 1778 ER - TY - CHAP A1 - Frotscher, Ralf A1 - Staat, Manfred ED - Nithiarasu, Perumal T1 - Homogenization of a cardiac tissue construct T2 - CMBE15 : 4th International Conference on Computational & Mathematical Biomedical Engineering ; 29th June - 1st July 2015 ; École Normale Supérieure de Cachan ; Cachan (Paris), France Y1 - 2015 SN - 2227-9385 N1 - Konferenzband unter: http://www.compbiomed.net/getfile.php?type=12/site_documents&id=Proceedings_2227-9385_compressed.pdf SP - 645 EP - 648 PB - CMBE CY - [s.l.] ER - TY - JOUR A1 - Baroud, G. A1 - Wu, J.Z. A1 - Bohner, M A1 - Sponagel, Stefan A1 - Steffen, T. T1 - How to determine the permeability for cement infiltration into osteoporotic cancellous bone JF - Medical Engineering & Physics. 25 (2003), H. 4 N2 - Cement augmentation is an emerging surgical procedure in which bone cement is used to infiltrate and reinforce osteoporotic vertebrae. Although this infiltration procedure has been widely applied, it is performed empirically and little is known about the flow characteristics of cement during the injection process. We present a theoretical and experimental approach to investigate the intertrabecular bone permeability during the infiltration procedure. The cement permeability was considered to be dependent on time, bone porosity, and cement viscosity in our analysis. In order to determine the time-dependent permeability, ten cancellous bone cores were harvested from osteoporotic vertebrae, infiltrated with acrylic cement at a constant flow rate, and the pressure drop across the cores during the infiltration was measured. The viscosity dependence of the permeability was determined based on published experimental data. The theoretical model for the permeability as a function of bone porosity and time was then fit to the testing data. Our findings suggest that the intertrabecular bone permeability depends strongly on time. For instance, the initial permeability (60.89 mm4/N.s) reduced to approximately 63% of its original value within 18 seconds. This study is the first to analyze cement flow through osteoporotic bone. The theoretical and experimental models provided in this paper are generic. Thus, they can be used to systematically study and optimize the infiltration process for clinical practice. KW - Osteoporose KW - Permeabilität KW - Viskose Strömung KW - Viskosität KW - Vertebroplastie KW - Cement infiltration KW - Vertebroplasty KW - Osteoporosis KW - Permeability KW - Experiment KW - Analysis KW - Viscous flow Y1 - 2003 SN - 1350-4533 SP - 283 EP - 288 ER - TY - THES A1 - Duong, Minh Tuan T1 - Hyperelastic modeling and soft-tissue growth integrated with the smoothed finite element method - SFEM Y1 - 2015 N1 - Aachen, Techn. Hochsch., Diss., 2014 PB - RWTH Aachen University ER - TY - JOUR A1 - Doorschodt, B. M. A1 - Schreinemachers, M. C. J. M. A1 - Behbahani, Mehdi A1 - Florquin, S. A1 - Weis, J. A1 - Staat, Manfred A1 - Tolba, R. H. T1 - Hypothermic machine perfusion of kidney grafts: which pressure is preferred JF - Annals of Biomedical Engineering. 39 (2011), H. 3 Y1 - 2011 SN - 1573-9686 SP - 1051 EP - 1059 PB - Springer CY - Berlin ER - TY - CHAP A1 - Dachwald, Bernd A1 - Ulamec, Stephan A1 - Kowalski, Julia A1 - Boxberg, Marc S. A1 - Baader, Fabian A1 - Biele, Jens A1 - Kömle, Norbert ED - Badescu, Viorel ED - Zacny, Kris ED - Bar-Cohen, Yoseph T1 - Ice melting probes T2 - Handbook of Space Resources N2 - The exploration of icy environments in the solar system, such as the poles of Mars and the icy moons (a.k.a. ocean worlds), is a key aspect for understanding their astrobiological potential as well as for extraterrestrial resource inspection. On these worlds, ice melting probes are considered to be well suited for the robotic clean execution of such missions. In this chapter, we describe ice melting probes and their applications, the physics of ice melting and how the melting behavior can be modeled and simulated numerically, the challenges for ice melting, and the required key technologies to deal with those challenges. We also give an overview of existing ice melting probes and report some results and lessons learned from laboratory and field tests. KW - Ice melting probe KW - Ice penetration KW - Icy moons KW - Ocean worlds KW - Mars Y1 - 2023 SN - 978-3-030-97912-6 (Print) SN - 978-3-030-97913-3 (Online) U6 - https://doi.org/10.1007/978-3-030-97913-3_29 SP - 955 EP - 996 PB - Springer CY - Cham ER - TY - CHAP A1 - Dachwald, Bernd A1 - Mikucki, Jill A. A1 - Tulaczyk, Slawek A1 - Digel, Ilya A1 - Feldmann, Marco A1 - Espe, Clemens A1 - Plescher, Engelbert A1 - Xu, Changsheng T1 - IceMole - a maneuverable probe for clean in-situ analysis and sampling of subsurface ice and subglacial aquatic ecosystems : extended abstract / SCAR Open Science Conference 2012, Session 29: Advancing Clean Technologies for Exploration of Glacial Aquatic Ecosystems N2 - The ”IceMole“ is a novel maneuverable subsurface ice probe for clean in-situ analysis and sampling of subsurface ice and subglacial water/brine. It is developed and build at FH Aachen University of Applied Sciences’ Astronautical Laboratory. A first prototype was successfully tested on the Swiss Morteratsch glacier in 2010. Clean sampling is achieved with a hollow ice screw (as it is used in mountaineering) at the tip of the probe. Maneuverability is achieved with a differentially heated melting head. Funded by the German Space Agency (DLR), a consortium led by FH Aachen currently develops a much more advanced IceMole probe, which includes a sophisticated system for obstacle avoidance, target detection, and navigation in the ice. We intend to use this probe for taking clean samples of subglacial brine at the Blood Falls (McMurdo Dry Valleys, East Antarctica) for chemical and microbiological analysis. In our conference contribution, we 1) describe the IceMole design, 2) report the results of the field tests of the first prototype on the Morteratsch glacier, 3) discuss the probe’s potential for the clean in-situ analysis and sampling of subsurface ice and subglacial liquids, and 4) outline the way ahead in the development of this technology. KW - Eisschicht KW - Sonde KW - subsurface ice KW - subglacial aquatic ecosystems Y1 - 2012 ER - TY - JOUR A1 - Dachwald, Bernd A1 - Mikucki, Jill A1 - Tulaczyk, Slawek A1 - Digel, Ilya A1 - Espe, Clemens A1 - Feldmann, Marco A1 - Francke, Gero A1 - Kowalski, Julia A1 - Xu, Changsheng T1 - IceMole : A maneuverable probe for clean in situ analysis and sampling of subsurface ice and subglacial aquatic ecosystems JF - Annals of Glaciology N2 - There is significant interest in sampling subglacial environments for geobiological studies, but they are difficult to access. Existing ice-drilling technologies make it cumbersome to maintain microbiologically clean access for sample acquisition and environmental stewardship of potentially fragile subglacial aquatic ecosystems. The IceMole is a maneuverable subsurface ice probe for clean in situ analysis and sampling of glacial ice and subglacial materials. The design is based on the novel concept of combining melting and mechanical propulsion. It can change melting direction by differential heating of the melting head and optional side-wall heaters. The first two prototypes were successfully tested between 2010 and 2012 on glaciers in Switzerland and Iceland. They demonstrated downward, horizontal and upward melting, as well as curve driving and dirt layer penetration. A more advanced probe is currently under development as part of the Enceladus Explorer (EnEx) project. It offers systems for obstacle avoidance, target detection, and navigation in ice. For the EnEx-IceMole, we will pay particular attention to clean protocols for the sampling of subglacial materials for biogeochemical analysis. We plan to use this probe for clean access into a unique subglacial aquatic environment at Blood Falls, Antarctica, with return of a subglacial brine sample. KW - Antarctic Glaciology KW - Extraterrestrial Glaciology KW - Glaciological instruments and methods KW - Subclacial exploration KW - Subglacial lakes Y1 - 2014 U6 - https://doi.org/10.3189/2014AoG65A004 SN - 1727-5644 VL - 55 IS - 65 SP - 14 EP - 22 PB - Cambridge University Press CY - Cambridge ER - TY - CHAP A1 - Dachwald, Bernd A1 - Xu, Changsheng A1 - Feldmann, Marco A1 - Plescher, Engelbert T1 - IceMole : Development of a novel subsurface ice probe and testing of the first prototype on the Morteratsch Glacier T2 - EGU General Assembly 2011 Vienna | Austria | 03 – 08 April 2011 N2 - We present the novel concept of a combined drilling and melting probe for subsurface ice research. This probe, named “IceMole”, is currently developed, built, and tested at the FH Aachen University of Applied Sciences’ Astronautical Laboratory. Here, we describe its first prototype design and report the results of its field tests on the Swiss Morteratsch glacier. Although the IceMole design is currently adapted to terrestrial glaciers and ice shields, it may later be modified for the subsurface in-situ investigation of extraterrestrial ice, e.g., on Mars, Europa, and Enceladus. If life exists on those bodies, it may be present in the ice (as life can also be found in the deep ice of Earth). Y1 - 2011 ER - TY - JOUR A1 - Werfel, Stanislas A1 - Günthner, Roman A1 - Hapfelmeier, Alexander A1 - Hanssen, Henner A1 - Kotliar, Konstantin A1 - Heemann, Uwe A1 - Schmaderer, Christoph ED - Guzik, Tomasz J. T1 - Identification of cardiovascular high-risk groups from dynamic retinal vessel signals using untargeted machine learning JF - Cardiovascular Research N2 - Dynamic retinal vessel analysis (DVA) provides a non-invasive way to assess microvascular function in patients and potentially to improve predictions of individual cardiovascular (CV) risk. The aim of our study was to use untargeted machine learning on DVA in order to improve CV mortality prediction and identify corresponding response alterations. KW - Machine learning KW - Retinal vessels KW - Microcirculation KW - Haemodialysis KW - Myocardial infarction and cardiac death Y1 - 2022 U6 - https://doi.org/10.1093/cvr/cvab040 SN - 0008-6363 VL - 118 IS - 2 SP - 612 EP - 621 PB - Oxford University Press CY - Oxford ER - TY - CHAP A1 - Kahmann, Stephanie A1 - Hackl, Michael A1 - Wegmann, Kilian A1 - Müller, Lars-Peter A1 - Staat, Manfred ED - Erni, Daniel T1 - Impact of a proximal radial shortening osteotomy on the distribution of forces and the stability of the elbow T2 - 1st YRA MedTech Symposium 2016 : April 8th / 2016 / University of Duisburg-Essen N2 - The human arm consists of the humerus (upper arm), the medial ulna and the lateral radius (forearm). The joint between the humerus and the ulna is called humeroulnar joint and the joint between the humerus and the radius is called humeroradial joint. Lateral and medial collateral ligaments stabilize the elbow. Statistically, 2.5 out of 10,000 people suffer from radial head fractures [1]. In these fractures the cartilage is often affected. Caused by the injured cartilage, degenerative diseases like posttraumatic arthrosis may occur. The resulting pain and reduced range of motion have an impact on the patient’s quality of life. Until now, there has not been a treatment which allows typical loads in daily life activities and offers good long-term results. A new surgical approach was developed with the motivation to reduce the progress of the posttraumatic arthrosis. Here, the radius is shortened by 3 mm in the proximal part [2]. By this means, the load of the radius is intended to be reduced due to a load shift to the ulna. Since the radius is the most important stabilizer of the elbow it has to be confirmed that the stability is not affected. In the first test (Fig. 1 left), pressure distributions within the humeroulnar and humeroradial joints a native and a shortened radius were measured using resistive pressure sensors (I5076 and I5027, Tekscan, USA). The humerus was loaded axially in a tension testing machine (Z010, Zwick Roell, Germany) in 50 N steps up to 400 N. From the humerus the load is transmitted through both the radius and the ulna into the hand which is fixed on the ground. In the second test (Fig. 1 right), the joint stability was investigated using a digital image correlation system to measure the displacement of the ulna. Here, the humerus is fixed with a desired flexion angle and the unconstrained forearm lies on the ground. A rope connects the load actuator with a hook fixed in the ulna. A guide roller is used so that the rope pulls the ulna horizontally when a tensile load is applied. This creates a moment about the elbow joint with a maximum value of 7.5 Nm. Measurements were performed with varying flexion angles (0°, 30°, 60°, 90°, 120°). For both tests and each measurement, seven specimens were used. Student ́s t-test was employed to determine whether the mean values of the measurements in native specimen and operated specimens differ significantly. Y1 - 2016 U6 - https://doi.org/10.17185/duepublico/40821 SP - 7 EP - 8 PB - Universität Duisburg-Essen CY - Duisburg ER - TY - JOUR A1 - Dachwald, Bernd A1 - McDonald, Malcolm A1 - McInnes, Colin R. A1 - Mengali, Giovanni T1 - Impact of Optical Degradation on Solar Sail Mission Performance JF - Journal of Spacecraft and Rockets. 44 (2007), H. 4 Y1 - 2007 SN - 0022-4650 N1 - 2. ISSN: 1533-6794 SP - 740 EP - 749 ER - TY - CHAP A1 - Nix, Yvonne A1 - Frotscher, Ralf A1 - Staat, Manfred ED - Eberhardsteiner, J. T1 - Implementation of the edge-based smoothed extended finite element method T2 - Proceedings 6th European Congress on Computational Methods in Applied Sciences and Engineering (ECCOMAS 2012) Vienna, Austria, September 10-14, 2012 Y1 - 2012 ER -