TY - THES A1 - Frotscher, Ralf T1 - Electromechanical modeling and simulation of thin cardiac tissue constructs - smoothed FEM applied to a biomechanical plate problem Y1 - 2016 N1 - Duisburg, Essen, Universität Duisburg-Essen, Diss., 2016 ER - TY - THES A1 - Duong, Minh Tuan T1 - Hyperelastic modeling and soft-tissue growth integrated with the smoothed finite element method - SFEM Y1 - 2015 N1 - Aachen, Techn. Hochsch., Diss., 2014 PB - RWTH Aachen University ER - TY - THES A1 - Pham, Phu Tinh T1 - Upper bound limit and shakedown analysis of elastic-plastic bounded linearly kinematic hardening structures Y1 - 2011 N1 - Aachen, Techn. Hochsch., Diss., 2011 PB - RWTH Aachen University CY - Aachen ER - TY - THES A1 - Tran, Thanh Ngoc T1 - Limit and shakedown analysis of plates and shells including uncertainties Y1 - 2008 N1 - Chemnitz, Techn. Univ., Diss., 2008 ER - TY - BOOK A1 - Staat, Manfred A1 - Heitzer, Michael T1 - Numerical methods for limit and shakedown analysis. Deterministic and probabilistic problems. Y1 - 2003 SN - 3-00-010001-6 N1 - NIC Series Vol. 15 / Ed. by Staat, M; Heitzer, M. PB - John von Neumann Institute for Computing (NIC) CY - Jülich ER - TY - JOUR A1 - Bhattarai, Aroj A1 - Staat, Manfred T1 - A computational study of organ relocation after laparoscopic pectopexy to repair posthysterectomy vaginal vault prolapse JF - Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization Y1 - 2019 U6 - https://doi.org/10.1080/21681163.2019.1670095 SN - 2168-1171 PB - Taylor & Francis CY - London ER - TY - JOUR A1 - Quittmann, Oliver J. A1 - Abel, Thomas A1 - Albracht, Kirsten A1 - Meskemper, Joshua A1 - Foitschik, Tina A1 - Strüder, Heiko K. T1 - Biomechanics of handcycling propulsion in a 30-min continuous load test at lactate threshold: Kinetics, kinematics, and muscular activity in able-bodied participants JF - European Journal of Applied Physiology N2 - Purpose This study aims to investigate the biomechanics of handcycling during a continuous load trial (CLT) to assess the mechanisms underlying fatigue in upper body exercise. Methods Twelve able-bodied triathletes performed a 30-min CLT at a power output corresponding to lactate threshold in a racing recumbent handcycle mounted on a stationary ergometer. During the CLT, ratings of perceived exertion (RPE), tangential crank kinetics, 3D joint kinematics, and muscular activity of ten muscles of the upper extremity and trunk were examined using motion capturing and surface electromyography. Results During the CLT, spontaneously chosen cadence and RPE increased, whereas crank torque decreased. Rotational work was higher during the pull phase. Peripheral RPE was higher compared to central RPE. Joint range of motion decreased for elbow-flexion and radial-duction. Integrated EMG (iEMG) increased in the forearm flexors, forearm extensors, and M. deltoideus (Pars spinalis). An earlier onset of activation was found for M. deltoideus (Pars clavicularis), M. pectoralis major, M. rectus abdominis, M. biceps brachii, and the forearm flexors. Conclusion Fatigue-related alterations seem to apply analogously in handcycling and cycling. The most distal muscles are responsible for force transmission on the cranks and might thus suffer most from neuromuscular fatigue. The findings indicate that peripheral fatigue (at similar lactate values) is higher in handcycling compared to leg cycling, at least for inexperienced participants. An increase in cadence might delay peripheral fatigue by a reduced vascular occlusion. We assume that the gap between peripheral and central fatigue can be reduced by sport-specific endurance training. Y1 - 2020 U6 - https://doi.org/10.1007/s00421-020-04373-x SN - 1439-6327 IS - 120 SP - 1403 EP - 1415 PB - Springer CY - Heidelberg ER - TY - CHAP A1 - Pohle-Fröhlich, Regina A1 - Dalitz, Christoph A1 - Richter, Charlotte A1 - Hahnen, Tobias A1 - Stäudle, Benjamin A1 - Albracht, Kirsten T1 - Estimation of muscle fascicle orientation in ultrasonic images T2 - Proceedings of the 15th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 5 N2 - We compare four different algorithms for automatically estimating the muscle fascicle angle from ultrasonic images: the vesselness filter, the Radon transform, the projection profile method and the gray level cooccurence matrix (GLCM). The algorithm results are compared to ground truth data generated by three different experts on 425 image frames from two videos recorded during different types of motion. The best agreement with the ground truth data was achieved by a combination of pre-processing with a vesselness filter and measuring the angle with the projection profile method. The robustness of the estimation is increased by applying the algorithms to subregions with high gradients and performing a LOESS fit through these estimates. Y1 - 2020 SN - 978-989-758-402-2 U6 - https://doi.org/10.5220/0008933900790086 N1 - 15th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications VISAPP 2020, Valletta, Malta SP - 79 EP - 86 PB - SciTePress CY - Setúbal, Portugal ER - TY - JOUR A1 - Rausch, Valentin A1 - Harbrecht, Andreas A1 - Kahmann, Stephanie Lucina A1 - Fenten, Thomas A1 - Jovanovic, Nebojsa A1 - Hackl, Michael A1 - Müller, Lars P. A1 - Staat, Manfred A1 - Wegmann, Kilian T1 - Osteosynthesis of Phalangeal Fractures: Biomechanical Comparison of Kirschner Wires, Plates, and Compression Screws JF - The Journal of Hand Surgery N2 - Purpose The aim of this study was to compare several osteosynthesis techniques (intramedullary headless compression screws, T-plates, and Kirschner wires) for distal epiphyseal fractures of proximal phalanges in a human cadaveric model. Methods A total of 90 proximal phalanges from 30 specimens (index, ring, and middle fingers) were used for this study. After stripping off all soft tissue, a transverse distal epiphyseal fracture was simulated at the proximal phalanx. The 30 specimens were randomly assigned to 1 fixation technique (30 per technique), either a 3.0-mm intramedullary headless compression screw, locking plate fixation with a 2.0-mm T-plate, or 2 oblique 1.0-mm Kirschner wires. Displacement analysis (bending, distraction, and torsion) was performed using optical tracking of an applied random speckle pattern after osteosynthesis. Biomechanical testing was performed with increasing cyclic loading and with cyclic load to failure using a biaxial torsion-tension testing machine. Results Cannulated intramedullary compression screws showed significantly less displacement at the fracture site in torsional testing. Furthermore, screws were significantly more stable in bending testing. Kirschner wires were significantly less stable than plating or screw fixation in any cyclic load to failure test setup. Conclusions Intramedullary compression screws are a highly stable alternative in the treatment of transverse distal epiphyseal phalangeal fractures. Kirschner wires seem to be inferior regarding displacement properties and primary stability. Clinical relevance Fracture fixation of phalangeal fractures using plate osteosynthesis may have the advantage of a very rigid reduction, but disadvantages such as stiffness owing to the more invasive surgical approach and soft tissue irritation should be taken into account. Headless compression screws represent a minimally invasive choice for fixation with good biomechanical properties. Y1 - 2020 U6 - https://doi.org/10.1016/j.jhsa.2020.04.010 SN - 0363-5023 VL - 45 IS - 10 SP - 987.e1 EP - 987.e8 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Akimbekov, Nuraly S. A1 - Digel, Ilya A1 - Abdieva, Gulzhamal A1 - Ualieva, Perizat A1 - Tastambek, Kuanysh T1 - Lignite biosolubilization and bioconversion by Bacillus sp.: the collation of analytical data JF - Biofuels N2 - The vast metabolic potential of microbes in brown coal (lignite) processing and utilization can greatly contribute to innovative approaches to sustainable production of high-value products from coal. In this study, the multi-faceted and complex coal biosolubilization process by Bacillus sp. RKB 7 isolate from the Kazakhstan coal-mining soil is reported, and the derived products are characterized. Lignite solubilization tests performed for surface and suspension cultures testify to the formation of numerous soluble lignite-derived substances. Almost 24% of crude lignite (5% w/v) was solubilized within 14 days under slightly alkaline conditions (pH 8.2). FTIR analysis revealed various functional groups in the obtained biosolubilization products. Analyses of the lignite-derived humic products by UV-Vis and fluorescence spectrometry as well as elemental analysis yielded compatible results indicating the emerging products had a lower molecular weight and degree of aromaticity. Furthermore, XRD and SEM analyses were used to evaluate the biosolubilization processes from mineralogical and microscopic points of view. The findings not only contribute to a deeper understanding of microbe–mineral interactions in coal environments, but also contribute to knowledge of coal biosolubilization and bioconversion with regard to sustainable production of humic substances. The detailed and comprehensive analyses demonstrate the huge biotechnological potential of Bacillus sp. for agricultural productivity and environmental health. KW - humic acid KW - Bacillus sp KW - lignite KW - Biosolubilization Y1 - 2021 SN - 1759-7277 VL - 12 IS - 3 SP - 247 EP - 258 PB - Taylor & Francis CY - London ER - TY - JOUR A1 - Malik, A. M. A1 - Abdieva, G. Zh. A1 - Ualieva, P. S. A1 - Zhubanova, A. A. A1 - Temiz Artmann, Aysegül T1 - CКPИНИНГ МИКPOOPГAНИЗМOВ-ДECТPУКТOPOВ XЛOРOPГAНИЧECКИX ЗAГPЯЗНИТEЛEЙ T1 - Screening of microorganisms – destructors of chlororganic pollutants JF - Eurasian Journal of Ecology Y1 - 2019 SN - 2617-7358 VL - 61 IS - 4 SP - 61 EP - 71 ER - TY - JOUR A1 - Digel, Ilya A1 - Kern, Inna A1 - Geenen, Eva-Maria A1 - Akimbekov, Nuraly S. T1 - Dental plaque removal by ultrasonic toothbrushes JF - dentistry journal N2 - With the variety of toothbrushes on the market, the question arises, which toothbrush is best suited to maintain oral health? This thematic review focuses first on plaque formation mechanisms and then on the plaque removal effectiveness of ultrasonic toothbrushes and their potential in preventing oral diseases like periodontitis, gingivitis, and caries. We overviewed the physical effects that occurred during brushing and tried to address the question of whether ultrasonic toothbrushes effectively reduced the microbial burden by increasing the hydrodynamic forces. The results of published studies show that electric toothbrushes, which combine ultrasonic and sonic (or acoustic and mechanic) actions, may have the most promising effect on good oral health. Existing ultrasonic/sonic toothbrush models do not significantly differ regarding the removal of dental biofilm and the reduction of gingival inflammation compared with other electrically powered toothbrushes, whereas the manual toothbrushes show a lower effectiveness. Y1 - 2020 U6 - https://doi.org/10.3390/dj8010028 SN - 2304-6767 VL - 8 IS - 28 SP - 1 EP - 13 PB - MDPI CY - Basel ER - TY - JOUR A1 - Rausch, Valentin A1 - Kahmann, Stephanie Lucina A1 - Baltschun, Christoph A1 - Staat, Manfred A1 - Müller, Lars P. A1 - Wegmann, Kilian T1 - Pressure distribution to the distal biceps tendon at the radial tuberosity: a biomechanical study JF - The Journal of Hand Surgery N2 - Purpose Mechanical impingement at the narrow radioulnar space of the tuberosity is believed to be an etiological factor in the injury of the distal biceps tendon. The aim of the study was to compare the pressure distribution at the proximal radioulnar space between 2 fixation techniques and the intact state. Methods Six right arms and 6 left arms from 5 female and 6 male frozen specimens were used for this study. A pressure transducer was introduced at the height of the radial tuberosity with the intact distal biceps tendon and after 2 fixation methods: the suture-anchor and the cortical button technique. The force (N), maximum pressure (kPa) applied to the radial tuberosity, and the contact area (mm²) of the radial tuberosity with the ulna were measured and differences from the intact tendon were detected from 60° supination to 60° pronation in 15° increments with the elbow in full extension and in 45° and 90° flexion of the elbow. Results With the distal biceps tendon intact, the pressures during pronation were similar regardless of extension and flexion and were the highest at 60° pronation with 90° elbow flexion (23.3 ± 53.5 kPa). After repair of the tendon, the mean peak pressure, contact area, and total force showed an increase regardless of the fixation technique. Highest peak pressures were found using the cortical button technique at 45° flexion of the elbow and 60° pronation. These differences were significantly different from the intact tendon. The contact area was significantly larger in full extension and 15°, 30°, and 60° pronation using the cortical button technique. Conclusions Pressures on the distal biceps tendon at the radial tuberosity increase during pronation, especially after repair of the tendon. Clinical relevance Mechanical impingement could play a role in both the etiology of primary distal biceps tendon ruptures and the complications occurring after fixation of the tendon using certain techniques. Y1 - 2020 U6 - https://doi.org/10.1016/j.jhsa.2020.01.006 SN - 0363-5023 VL - 45 IS - 8 SP - 776.e1 EP - 776.e9 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Attar, Mandana Hossein Zadeh A1 - Merk, Hans F. A1 - Kotliar, Konstantin A1 - Wurpts, Gerda A1 - Röseler, Stefani A1 - Moll-Slodowy, Silke A1 - Plange, Johann A1 - Baron, Jens Malte A1 - Balakirski, Galina T1 - The CD63 basophil activation test as a diagnostic tool for assessing autoimmunity in patients with chronic spontaneous urticaria JF - European Journal of Dermatology Y1 - 2019 U6 - https://doi.org/10.1684/ejd.2019.3680 VL - 29 IS - 6 SP - 614 EP - 618 ER - TY - CHAP A1 - Azat, Seitkhan A1 - Kerimkulova, Almagul R. A1 - Mansurov, Zulkhair A. A1 - Adekenov, Sergazy A1 - Artmann, Gerhard T1 - The Use of Fusicoccin as Anticancer Compound T2 - Carbon Nanomaterials in Biomedicine and the Environment N2 - The problem of creation and use of sorption materials is of current interest for the practice of the modern medicine and agriculture. Practical importance is production of a biostimulant using a carbon sorbent for a significant increase in productivity, which is very relevant for the regions of Kazakhstan. It is known that a plant phytohormone—fusicoccin—in nanogram concentrations transforms cancer cells to the state of apoptosis. In this regard, there is a scientific practical interest in the development of a highly efficient method for producing fusicoccin from extract of germinated wheat seeds. According to the results of computer modeling, cleaning composite components of fusicoccin using microporous carbon adsorbents not suitable as the size of the molecule of fusicoccin more than micropores and the optimum pore size for purification of constituents of fusicoccin was determined by computer simulation. Y1 - 2020 SN - 978-0-429-42864-7 U6 - https://doi.org/10.1201/9780429428647-8 SP - 149 EP - 172 PB - Jenny Stanford Publishing CY - New York ER - TY - JOUR A1 - Knox, Ronald A1 - Bruggemann, Andrea A1 - Gossmann, Matthias A1 - Thomas, Ulrich A1 - Horváth, András A1 - Dragicevic, Elena A1 - Stoelzle-Feix, Sonja A1 - Fertig, Niels A1 - Jung, Alexander A1 - Raman, Aravind Hariharan A1 - Staat, Manfred A1 - Linder, Peter T1 - Combining physiological relevance and throughput for in vitro cardiac contractility measurement JF - Biophysical Journal N2 - Despite increasing acceptance of human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) in safety pharmacology, controversy remains about the physiological relevance of existing in vitro models for their mechanical testing. We hypothesize that existing signs of immaturity of the cell models result from an improper mechanical environment. We cultured hiPSC-CMs in a 96-well format on hyperelastic silicone membranes imitating their native mechanical environment, resulting in physiological responses to compound stimuli.We validated cell responses on the FLEXcyte 96, with a set of reference compounds covering a broad range of cellular targets, including ion channel modulators, adrenergic receptor modulators and kinase inhibitors. Acute (10 - 30 min) and chronic (up to 7 days) effects were investigated. Furthermore, the measurements were complemented with electromechanical models based on electrophysiological recordings of the used cell types.hiPSC-CMs were cultured on freely-swinging, ultra-thin and hyperelastic silicone membranes. The weight of the cell culture medium deflects the membranes downwards. Rhythmic contraction of the hiPSC-CMs resulted in dynamic deflection changes which were quantified by capacitive distance sensing. The cells were cultured for 7 days prior to compound addition. Acute measurements were conducted 10-30 minutes after compound addition in standard culture medium. For chronic treatment, compound-containing medium was replaced daily for up to 7 days. Electrophysiological properties of the employed cell types were recorded by automated patch-clamp (Patchliner) and the results were integrated into the electromechanical model of the system.Calcium channel agonist S Bay K8644 and beta-adrenergic stimulator isoproterenol induced significant positive inotropic responses without additional external stimulation. Kinase inhibitors displayed cardiotoxic effects on a functional level at low concentrations. The system-integrated analysis detected alterations in beating shape as well as frequency and arrhythmic events and we provide a quantitative measure of these. Y1 - 2020 U6 - https://doi.org/10.1016/j.bpj.2019.11.3104 SN - 0006-3495 N1 - Raman, Arayind Hariharan im Artikel unter dem Namen: Raman, Alexander H. VL - 118 IS - Issue 3, Supplement 1 SP - 570a PB - Elsevier CY - Amsterdam ER - TY - CHAP A1 - Staat, Manfred A1 - Duong, Minh Tuan T1 - Smoothed Finite Element Methods for Nonlinear Solid Mechanics Problems: 2D and 3D Case Studies T2 - Proceedings of the National Science and Technology Conference on Mechanical - Transportation Engineering (NSCMET 2016), 13th October 2016, Hanoi, Vietnam, Vol.2 N2 - The Smoothed Finite Element Method (SFEM) is presented as an edge-based and a facebased techniques for 2D and 3D boundary value problems, respectively. SFEMs avoid shortcomings of the standard Finite Element Method (FEM) with lower order elements such as overly stiff behavior, poor stress solution, and locking effects. Based on the idea of averaging spatially the standard strain field of the FEM over so-called smoothing domains SFEM calculates the stiffness matrix for the same number of degrees of freedom (DOFs) as those of the FEM. However, the SFEMs significantly improve accuracy and convergence even for distorted meshes and/or nearly incompressible materials. Numerical results of the SFEMs for a cardiac tissue membrane (thin plate inflation) and an artery (tension of 3D tube) show clearly their advantageous properties in improving accuracy particularly for the distorted meshes and avoiding shear locking effects. Y1 - 2016 SP - 440 EP - 445 ER - TY - CHAP A1 - Tran, Ngoc Trinh A1 - Tran, Thanh Ngoc A1 - Matthies, Hermann G. A1 - Stavroulakis, Georgios Eleftherios A1 - Staat, Manfred T1 - FEM Shakedown of uncertain structures by chance constrained programming T2 - PAMM Proceedings in Applied Mathematics and Mechanics Y1 - 2016 U6 - https://doi.org/10.1002/pamm.201610346 SN - 1617-7061 N1 - Special Issue: Joint 87th Annual Meeting of the International Association of Applied Mathematics and Mechanics (GAMM) and Deutsche Mathematiker-Vereinigung VL - 16 IS - 1 SP - 715 EP - 716 ER - TY - JOUR A1 - Topçu, Murat A1 - Madabhushi, Gopal S.P. A1 - Staat, Manfred T1 - A generalized shear-lag theory for elastic stress transfer between matrix and fibres having a variable radius JF - International Journal of Solids and Structures N2 - A generalized shear-lag theory for fibres with variable radius is developed to analyse elastic fibre/matrix stress transfer. The theory accounts for the reinforcement of biological composites, such as soft tissue and bone tissue, as well as for the reinforcement of technical composite materials, such as fibre-reinforced polymers (FRP). The original shear-lag theory proposed by Cox in 1952 is generalized for fibres with variable radius and with symmetric and asymmetric ends. Analytical solutions are derived for the distribution of axial and interfacial shear stress in cylindrical and elliptical fibres, as well as conical and paraboloidal fibres with asymmetric ends. Additionally, the distribution of axial and interfacial shear stress for conical and paraboloidal fibres with symmetric ends are numerically predicted. The results are compared with solutions from axisymmetric finite element models. A parameter study is performed, to investigate the suitability of alternative fibre geometries for use in FRP. KW - Natural fibres KW - Polymer-matrix composites KW - Biocomposites KW - Stress concentrations KW - Finite element analysis Y1 - 2022 U6 - https://doi.org/10.1016/j.ijsolstr.2022.111464 SN - 0020-7683 VL - 239–240 IS - Art. No. 111464 PB - Elsevier CY - New York, NY ER - TY - JOUR A1 - Mandekar, Swati A1 - Holland, Abigail A1 - Thielen, Moritz A1 - Behbahani, Mehdi A1 - Melnykowycz, Mark T1 - Advancing towards Ubiquitous EEG, Correlation of In-Ear EEG with Forehead EEG JF - Sensors N2 - Wearable EEG has gained popularity in recent years driven by promising uses outside of clinics and research. The ubiquitous application of continuous EEG requires unobtrusive form-factors that are easily acceptable by the end-users. In this progression, wearable EEG systems have been moving from full scalp to forehead and recently to the ear. The aim of this study is to demonstrate that emerging ear-EEG provides similar impedance and signal properties as established forehead EEG. EEG data using eyes-open and closed alpha paradigm were acquired from ten healthy subjects using generic earpieces fitted with three custom-made electrodes and a forehead electrode (at Fpx) after impedance analysis. Inter-subject variability in in-ear electrode impedance ranged from 20 kΩ to 25 kΩ at 10 Hz. Signal quality was comparable with an SNR of 6 for in-ear and 8 for forehead electrodes. Alpha attenuation was significant during the eyes-open condition in all in-ear electrodes, and it followed the structure of power spectral density plots of forehead electrodes, with the Pearson correlation coefficient of 0.92 between in-ear locations ELE (Left Ear Superior) and ERE (Right Ear Superior) and forehead locations, Fp1 and Fp2, respectively. The results indicate that in-ear EEG is an unobtrusive alternative in terms of impedance, signal properties and information content to established forehead EEG. KW - in-ear EEG KW - correlation KW - forehead EEG KW - impedance spectroscopy KW - biopotential electrodes Y1 - 2022 U6 - https://doi.org/10.3390/s22041568 SN - 1424-8220 VL - 22 IS - 4 SP - 1 EP - 19 PB - MDPI CY - Basel ER -