TY - RPRT A1 - Feldmann, M. A1 - Kuhnhenne, M. A1 - Döring, Bernd A1 - Pyschny, D. A1 - Lawson, R.M. A1 - Chuter, R.D. A1 - Boudjabeur, S. A1 - Lecomte-Labory, F. A1 - Airaksinen, M. A1 - Heikkinen, J. A1 - Laamanen, J. A1 - Albart, P. A1 - D'Haeyer, R. A1 - Chica, J.A. A1 - Maseda, J.M. A1 - Amundarain, A. A1 - Rips, M.O. A1 - Nuñez, J.A. A1 - Macías, O. A1 - Beguin, P. A1 - Ben Larbi, A. T1 - Energy and thermal improvements for construction in steel (ETHICS) - EUR 26010 N2 - ETHICS is concerned with evaluating, measuring and making improvements in the thermal and energy performance of steel-clad and steel-framed buildings. It addresses basic building physics performance at a laboratory and full-scale level, and the preparation of design guidance for commercial, industrial and residential buildings. It includes the development of design tools to assist users in assessing whole-building performance, and calibrates these tools against whole-building measurements, which will be obtained from this research. Opportunities for renewable energy and other energy-saving features will be assessed. This project focuses on objectives that are of particular interest for the design of new steel constructions regarding energy efficiency. ETHICS investigates the as-built performance by on-site tests regarding air tightness and heat transfer properties of the building envelope and by monitoring the energy consumption and thermal comfort of selected up-to-date steel buildings. As energy efficiency is a key requirement for design and construction of buildings in the future, this project provides well-founded scientific data, which prove the high energy performance of current steel constructions and work out details for further improvements to maintain and extend the position of steel products in the construction sector. KW - steel KW - metal structure KW - building technique KW - energy efficiency KW - thermal insulation KW - industrial research KW - research report Y1 - 2013 SN - 978-92-79-30789-8 U6 - http://dx.doi.org/10.2777/17106 SN - 1831-9424 PB - Publications Office of the European Union CY - Luxembourg ER - TY - RPRT A1 - Kesti, Jyrki A1 - Mononen, Tarmo A1 - Lautso, Petteri A1 - Döring, Bernd A1 - Reger, Vitali A1 - Holopainen, R. A1 - Jung, N. A1 - Shemeikka, J. A1 - Nieminen, J. A1 - Reda, F. A1 - Lawson, Mark A1 - Botti, Andrea A1 - Hall, R. A1 - Zold, A. A1 - Buday, T. T1 - Zero energy solutions for multifunctional steel intensive commercial buildings (ZEMUSIC) - EUR 27627 N2 - The broad commercial objective of this project was the sustainable value creation in steel building technology by addressing the ways in which significant energy reductions can be made in the operation phase of multi-storey commercial buildings. A review on energy efficient commercial buildings in Europe has been carried out consisting of several case studies from different countries. The project included development of zero-energy concepts for reducing energy demand as well as concepts for heating, cooling and ventilation systems by utilising renewable energy sources in three different climates. Also alternative structural frame solutions were developed and analyzed in respect of structural and MEP (mechanical, electrical and plumbing solutions) features. An innovative long span floor system with integrated MEP routings promises a cost effective alternative for sophisticated ventilation distribution and radiant heating and cooling systems, allowing for high energy efficiency and high quality interior climate. The report includes also review of best architectural practices for integrated renewable energy solutions including different design strategies for building facades of zero energy buildings. Interesting results and design basis are also presented for steel energy pile concept, where structural foundation piles are utilized for ground energy harvesting. Life cycle cost calculations for near zero energy office building based on developed technologies show that a near zero energy construction is also profitable. The results and work methods of the project have been summarized in the form of design guidance that offers designers the knowledge gained in a form that can be easily understood. KW - steel KW - iron and steel industry KW - resistance of materials KW - materials technology KW - metal structure KW - research project KW - building industry KW - building materials KW - renewable energy KW - designs and models KW - research report KW - guide Y1 - 2015 SN - 978-92-79-54071-4 U6 - http://dx.doi.org/10.2777/111520 SN - 1831-9424 N1 - Enthalten: Appendix Design Guide: Deliverable Report WP6.4 Design Guide for steel intensive nearly zero office buildings (83 Seiten) PB - Publications Office of the European Union CY - Luxembourg ER - TY - CHAP A1 - Valero, Daniel A1 - Bung, Daniel B. T1 - Interfacial velocity estimation in highly aerated stepped spillway flows with a single tip fibre optical probe and Artificial Neural Networks T2 - 6th IAHR International Junior Researcher and Engineer Workshop on Hydraulic Structures, May 30th to June 1st 2016. Lübeck, Germany N2 - Air-water flows can be found in different engineering applications: from nuclear engineering to huge hydraulic structures. In this paper, a single tip fibre optical probe has been used to record high frequency (over 1 MHz) phase functions at different locations of a stepped spillway. These phase functions have been related to the interfacial velocities by means of Artificial Neural Networks (ANN) and the measurements of a classical double tip conductivity probe. Special attention has been put to the input selection and the ANN dimensions. Finally, ANN have shown to be able to link the signal rising times and plateau shapes to the air-water interfacial velocity. Y1 - 2016 U6 - http://dx.doi.org/10.15142/T3Q590 ER - TY - CHAP A1 - Feldmann, M. A1 - Döring, Bernd A1 - Pyschny, D. T1 - Floor systems; Sustainabilty analyses and assessments of steel bridges T2 - Sustainable steel buildings : a practical guide for structures and envelopes Y1 - 2016 SN - 978-1-118-74079-8 (PDF) SN - 978-1-118-74111-5 SP - 198 EP - 223 PB - Wiley Blackwell CY - Chichester, West Sussex ER - TY - JOUR A1 - Höttges, Jörg T1 - QKan - Management of drainage system data with QGIS JF - Free and Open Source Software for Geospatial (FOSS4G) Conference Proceedings Y1 - 2017 VL - 17 IS - Article 13 SP - 95 EP - 100 ER - TY - JOUR A1 - Valero, Daniel A1 - Bung, Daniel B. T1 - Reformulating self-aeration in hydraulic structures: Turbulent growth of free surface perturbations leading to air entrainment JF - International Journal of Multiphase Flow N2 - A new formulation for the prediction of free surface dynamics related to the turbulence occurring nearby is proposed. This formulation, altogether with a breakup criterion, can be used to compute the inception of self-aeration in high velocity flows like those occurring in hydraulic structures. Assuming a simple perturbation geometry, a kinematic and a non-linear momentum-based dynamic equation are formulated and forces acting on a control volume are approximated. Limiting steepness is proposed as an adequate breakup criterion. Role of the velocity fluctuations normal to the free surface is shown to be the main turbulence quantity related to self-aeration and the role of the scales contained in the turbulence spectrum are depicted. Surface tension force is integrated accounting for large displacements by using differential geometry for the curvature estimation. Gravity and pressure effects are also contemplated in the proposed formulation. The obtained equations can be numerically integrated for each wavelength, hence resulting in different growth rates and allowing computation of the free surface roughness wavelength distribution. Application to a prototype scale spillway (at the Aviemore dam) revealed that most unstable wavelength was close to the Taylor lengthscale. Amplitude distributions have been also obtained observing different scaling for perturbations stabilized by gravity or surface tension. The proposed theoretical framework represents a new conceptualization of self-aeration which explains the characteristic rough surface at the non-aerated region as well as other previous experimental observations which remained unresolved for several decades. Y1 - 2018 U6 - http://dx.doi.org/10.1016/j.ijmultiphaseflow.2017.12.011 SN - 0301-9322 VL - 100 SP - 127 EP - 142 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Valero, Daniel A1 - Bung, Daniel B. T1 - Artificial Neural Networks and pattern recognition for air-water flow velocity estimation using a single-tip optical fibre probe JF - Journal of Hydro-environment Research Y1 - 2017 U6 - http://dx.doi.org/10.1016/j.jher.2017.08.004 SN - 1570-6443 VL - 19 IS - 3 SP - 150 EP - 159 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Kerpen, Nils B. A1 - Bung, Daniel B. A1 - Valero, Daniel A1 - Schlurmann, Torsten T1 - Energy dissipation within the wave run-up at stepped revetments JF - Journal of Ocean University of China Y1 - 2017 U6 - http://dx.doi.org/10.1007/s11802-017-3355-z SN - 1993-5021 VL - 16 IS - 4 SP - 649 EP - 654 PB - Springer CY - Berlin ER - TY - CHAP A1 - Valero, Daniel A1 - Bung, Daniel B. A1 - Erpicum, Sebastien A1 - Dewals, Benjamin T1 - Numerical study of turbulent oscillations around a cylinder: RANS capabilities and sensitivity analysis T2 - Proceedings of the 37th IAHR World Congress August 13 – 18, 2017, Kuala Lumpur, Malaysia Y1 - 2017 SN - 2521-716X SP - 3126 EP - 3135 ER - TY - CHAP A1 - Bung, Daniel B. A1 - Valero, Daniel T1 - FlowCV - An open-source toolbox for computer vision applications in turbulent flows T2 - Proceedings of the 37th IAHR World Congress August 13 – 18, 2017, Kuala Lumpur, Malaysia Y1 - 2017 SN - 2521-716X SP - 5356 EP - 5365 ER - TY - JOUR A1 - Valero, Daniel A1 - Bung, Daniel B. T1 - Vectrino profiler spatial filtering for shear flows based on the mean velocity gradient equation JF - Journal of Hydraulic Engineering N2 - A new methodology is proposed to spatially filter acoustic Doppler velocimetry data from a Vectrino profiler based on the differential mean velocity equation. Lower and upper bounds are formulated in terms of physically based flow constraints. Practical implementation is discussed, and its application is tested against data gathered from an open-channel flow over a stepped macroroughness surface. The method has proven to detect outliers occurring all over the distance range sampled by the Vectrino profiler and has shown to remain applicable out of the region of validity of the velocity gradient equation. Finally, a statistical analysis suggests that physically obtained bounds are asymptotically representative. Y1 - 2018 U6 - http://dx.doi.org/10.1061/(ASCE)HY.1943-7900.0001485 SN - 0733-9429 N1 - Article number 04018037 VL - 144 IS - 7 PB - ASCE CY - Reston, Va. ER - TY - JOUR A1 - Valero, Daniel A1 - Bung, Daniel B. A1 - Crookston, B.M. T1 - Energy dissipation of a Type III basin under design and adverse conditions for stepped and smooth spillways JF - Journal of Hydraulic Engineering N2 - New information regarding the influence of a stepped chute on the hydraulic performance of the United States Bureau of Reclamation (Reclamation) Type III hydraulic jump stilling basin is presented for design (steady) and adverse (decreasing tailwater) conditions. Using published experimental data and computational fluid dynamics (CFD) models, this paper presents a detailed comparison between smooth-chute and stepped-chute configurations for chute slopes of 0.8H:1V and 4H:1V and Froude numbers (F) ranging from 3.1 to 9.5 for a Type III basin designed for F = 8. For both stepped and smooth chutes, the relative role of each basin element was quantified, up to the most hydraulic extreme case of jump sweep-out. It was found that, relative to a smooth chute, the turbulence generated by a stepped chute causes a higher maximum velocity decay within the stilling basin, which represents an enhancement of the Type III basin’s performance but also a change in the relative role of the basin elements. Results provide insight into the ability of the CFD models [unsteady Reynolds-averaged Navier-Stokes (RANS) equations with renormalization group (RNG) k-ϵ turbulence model and volume-of-fluid (VOF) for free surface tracking] to predict the transient basin flow structure and velocity profiles. Type III basins can perform adequately with a stepped chute despite the effects steps have on the relative role of each basin element. It is concluded that the classic Type III basin design, based upon methodology by reclamation specific to smooth chutes, can be hydraulically improved for the case of stepped chutes for design and adverse flow conditions using the information presented herein. Y1 - 2018 U6 - http://dx.doi.org/10.1061/(ASCE)HY.1943-7900.0001482 SN - 0733-9429 N1 - Article number 04018036 VL - 144 IS - 7 PB - ASCE CY - Reston, Va. ER - TY - JOUR A1 - Zhang, G. A1 - Valero, Daniel A1 - Bung, Daniel B. A1 - Chanson, H. T1 - On the estimation of free-surface turbulence using ultrasonic sensors JF - Flow Measurement and Instrumentation N2 - Accurate determination of free-surface dynamics has attracted much research attention during the past decade and has important applications in many environmental and water related areas. In this study, the free-surface dynamics in several turbulent flows commonly found in nature were investigated using a synchronised setup consisting of an ultrasonic sensor and a high-speed video camera. Basic sensor capabilities were examined in dry conditions to allow for a better characterisation of the present sensor model. The ultrasonic sensor was found to adequately reproduce free-surface dynamics up to the second order, especially in two-dimensional scenarios with the most energetic modes in the low frequency range. The sensor frequency response was satisfactory in the sub-20 Hz band, and its signal quality may be further improved by low-pass filtering prior to digitisation. The application of the USS to characterise entrapped air in high-velocity flows is also discussed. Y1 - 2018 U6 - http://dx.doi.org/10.1016/j.flowmeasinst.2018.02.009 SN - 0955-5986 VL - 60 SP - 171 EP - 184 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Bung, Daniel B. A1 - Valero, Daniel T1 - Re-aeration on stepped spillways with special consideration of entrained and entrapped air JF - Geosciences N2 - As with most high-velocity free-surface flows, stepped spillway flows become self-aerated when the drop height exceeds a critical value. Due to the step-induced macro-roughness, the flow field becomes more turbulent than on a similar smooth-invert chute. For this reason, cascades are oftentimes used as re-aeration structures in wastewater treatment. However, for stepped spillways as flood release structures downstream of deoxygenated reservoirs, gas transfer is also of crucial significance to meet ecological requirements. Prediction of mass transfer velocities becomes challenging, as the flow regime differs from typical previously studied flow conditions. In this paper, detailed air-water flow measurements are conducted on stepped spillway models with different geometry, with the aim to estimate the specific air-water interface. Re-aeration performances are determined by applying the absorption method. In contrast to earlier studies, the aerated water body is considered a continuous mixture up to a level where 75% air concentration is reached. Above this level, a homogenous surface wave field is considered, which is found to significantly affect the total air-water interface available for mass transfer. Geometrical characteristics of these surface waves are obtained from high-speed camera investigations. The results show that both the mean air concentration and the mean flow velocity have influence on the mass transfer. Finally, an empirical relationship for the mass transfer on stepped spillway models is proposed. Y1 - 2018 SN - 2076-3263 VL - 8 IS - 9 SP - Article number 333 PB - MDPI CY - Basel ER - TY - CHAP A1 - Bung, Daniel B. A1 - Tullis, Blake T1 - Hydraulic Structures - ISHS2018 in Perspective T2 - 7th IAHR International Symposium on Hydraulic Structures, Aachen, Germany, 15-18 May Y1 - 2018 SN - 978-0-692-13277-7 U6 - http://dx.doi.org/10.15142/T3WH2B ER - TY - CHAP A1 - Valero, Daniel A1 - Vogel, Jochen A1 - Schmidt, Daniel A1 - Bung, Daniel B. T1 - Three-dimensional flow structure inside the cavity of a non-aerated stepped chute T2 - 7th IAHR International Symposium on Hydraulic Structures, Aachen, Germany, 15-18 May Y1 - 2018 SN - 978-0-692-13277-7 U6 - http://dx.doi.org/10.15142/T3GH17 ER - TY - JOUR A1 - Kramer, Matthias A1 - Valero, Daniel A1 - Chanson, Hubert A1 - Bung, Daniel B. T1 - Towards reliable turbulence estimations with phase-detection probes: an adaptive window cross-correlation technique JF - Experiments in Fluids Y1 - 2019 U6 - http://dx.doi.org/10.1007/s00348-018-2650-9 SN - 1432-1114 VL - 60 EP - Article number 2 PB - Springer CY - Berlin ER - TY - JOUR A1 - Valero, Daniel A1 - Viti, Nicolo A1 - Gualtieri, Carlo T1 - Numerical Simulation of Hydraulic Jumps. Part 1: Experimental Data for Modelling Performance Assessment JF - Water Y1 - 2019 U6 - http://dx.doi.org/10.3390/w11010036 SN - 2073-4441 VL - 11 IS - 1 SP - Art. Nr. 36 PB - MDPI CY - Basel ER - TY - JOUR A1 - Viti, Nicolo A1 - Valero, Daniel A1 - Gualtieri, Carlo T1 - Numerical Simulation of Hydraulic Jumps. Part 2: Recent Results and Future Outlook JF - Water Y1 - 2019 U6 - http://dx.doi.org/10.3390/w11010028 SN - 2073-4441 VL - 11 IS - 1 SP - Art. Nr. 28 ER - TY - JOUR A1 - Valero, Daniel A1 - Chanson, Hubert A1 - Bung, Daniel B. T1 - Robust estimators for turbulence properties assessment Y1 - 2019 SP - 1 EP - 24 ER -