TY - CHAP A1 - Marco, Heather G. A1 - Ferrein, Alexander T1 - AGNES: The African-German Network of Excellence in Science T2 - Proceedings of the 2nd Developing World Robotics Forum, Workshop at IEEE AFRICON 2017 Y1 - 2017 SP - 1 EP - 2 ER - TY - CHAP A1 - Limpert, Nicolas A1 - Schiffer, Stefan A1 - Ferrein, Alexander T1 - A Local Planner for Ackermann-Driven Vehicles in ROS SBPL T2 - Proceedings of the International Conference on Pattern Recognition Association of South Africa and Robotics and Mechatronics (PRASA-RobMech), 2015 Y1 - 2015 U6 - https://doi.org/10.1109/RoboMech.2015.7359518 SP - 172 EP - 177 ER - TY - CHAP A1 - Leingartner, Max A1 - Maurer, Johannes A1 - Steinbauer, Gerald A1 - Ferrein, Alexander T1 - Evaluation of sensors and mapping approaches for disasters in tunnels T2 - IEEE International Symposium on Safety, Security, and Rescue Robotics : SSRR : 21-26 Oct. 2013, Linkoping, Sweden Y1 - 2013 SN - 978-1-4799-0879-0 SP - 1 EP - 7 ER - TY - JOUR A1 - Leingartner, Max A1 - Maurer, Johannes A1 - Ferrein, Alexander A1 - Steinbauer, Gerald T1 - Evaluation of Sensors and Mapping Approaches for Disasters in Tunnels JF - Journal of Field Robotics N2 - Ground or aerial robots equipped with advanced sensing technologies, such as three-dimensional laser scanners and advanced mapping algorithms, are deemed useful as a supporting technology for first responders. A great deal of excellent research in the field exists, but practical applications at real disaster sites are scarce. Many projects concentrate on equipping robots with advanced capabilities, such as autonomous exploration or object manipulation. In spite of this, realistic application areas for such robots are limited to teleoperated reconnaissance or search. In this paper, we investigate how well state-of-the-art and off-the-shelf components and algorithms are suited for reconnaissance in current disaster-relief scenarios. The basic idea is to make use of some of the most common sensors and deploy some widely used algorithms in a disaster situation, and to evaluate how well the components work for these scenarios. We acquired the sensor data from two field experiments, one from a disaster-relief operation in a motorway tunnel, and one from a mapping experiment in a partly closed down motorway tunnel. Based on these data, which we make publicly available, we evaluate state-of-the-art and off-the-shelf mapping approaches. In our analysis, we integrate opinions and replies from first responders as well as from some algorithm developers on the usefulness of the data and the limitations of the deployed approaches, respectively. We discuss the lessons we learned during the two missions. These lessons are interesting for the community working in similar areas of urban search and rescue, particularly reconnaissance and search. Y1 - 2016 U6 - https://doi.org/10.1002/rob.21611 SN - 1556-4967 VL - 33 IS - 8 SP - 1037 EP - 1057 PB - Wiley-VCH CY - Weinheim ER - TY - CHAP A1 - Krückel, Kai A1 - Nolden, Florian A1 - Ferrein, Alexander A1 - Scholl, Ingrid T1 - Intuitive visual teleoperation for UGVs using free-look augmented reality displays T2 - 2015 IEEE International Conference on Robotics and Automation (ICRA), Seattle, WA Y1 - 2015 U6 - https://doi.org/10.1109/ICRA.2015.7139809 SP - 4412 EP - 4417 ER - TY - CHAP A1 - Kirsch, Maximilian A1 - Mataré, Victor A1 - Ferrein, Alexander A1 - Schiffer, Stefan T1 - Integrating golog++ and ROS for Practical and Portable High-level Control T2 - Proceedings of the 12th International Conference on Agents and Artificial Intelligence - Volume 2 N2 - The field of Cognitive Robotics aims at intelligent decision making of autonomous robots. It has matured over the last 25 or so years quite a bit. That is, a number of high-level control languages and architectures have emerged from the field. One concern in this regard is the action language GOLOG. GOLOG has been used in a rather large number of applications as a high-level control language ranging from intelligent service robots to soccer robots. For the lower level robot software, the Robot Operating System (ROS) has been around for more than a decade now and it has developed into the standard middleware for robot applications. ROS provides a large number of packages for standard tasks in robotics like localisation, navigation, and object recognition. Interestingly enough, only little work within ROS has gone into the high-level control of robots. In this paper, we describe our approach to marry the GOLOG action language with ROS. In particular, we present our architecture on inte grating golog++, which is based on the GOLOG dialect Readylog, with the Robot Operating System. With an example application on the Pepper service robot, we show how primitive actions can be easily mapped to the ROS ActionLib framework and present our control architecture in detail. Y1 - 2020 U6 - https://doi.org/10.5220/0008984406920699 N1 - Proceedings of the 12th International Conference on Agents and Artificial Intelligence: ICAART 2020, Valletta, Malta SP - 692 EP - 699 PB - SciTePress CY - Setúbal, Portugal ER - TY - CHAP A1 - Kallweit, Stephan A1 - Gottschalk, Michael A1 - Walenta, Robert T1 - ROS based safety concept for collaborative robots in industrial applications T2 - Advances in robot design and intelligent control : proceedings of the 24th International Conference on Robotics in Alpe-Adria-Danube Region (RAAD). (Advances in intelligent systems and computing ; 371) N2 - The production and assembly of customized products increases the demand for flexible automation systems. One approach is to remove the safety fences that separate human and industrial robot to combine their skills. This collaboration possesses a certain risk for the human co-worker, leading to numerous safety concepts to protect him. The human needs to be monitored and tracked by a safety system using different sensors. The proposed system consists of a RGBD camera for surveillance of the common working area, an array of optical distance sensors to compensate shadowing effects of the RGBD camera and a laser range finder to detect the co-worker when approaching the work cell. The software for collision detection, path planning, robot control and predicting the behaviour of the co-worker is based on the Robot Operating System (ROS). A first prototype of the work cell shows that with advanced algorithms from the field of mobile robotics a very flexible safety concept can be realized: the robot not simply stops its movement when detecting a collision, but plans and executes an alternative path around the obstacle. KW - Collaborative robot KW - Human-Robot interaction KW - Safety concept KW - Workspace monitoring KW - Path planning Y1 - 2016 SN - 978-3-319-21289-0 (Print) ; 978-3-319-21290-6 (E-Book) U6 - https://doi.org/10.1007/978-3-319-21290-6_3 SP - 27 EP - 35 PB - Springer CY - Cham ER - TY - CHAP A1 - Hüning, Felix A1 - Stüttgen, Marcel T1 - Work in Progress: Interdisciplinary projects in times of COVID-19 crisis – challenges, risks and chances T2 - 2021 IEEE Global Engineering Education Conference (EDUCON) N2 - Project work and inter disciplinarity are integral parts of today's engineering work. It is therefore important to incorporate these aspects into the curriculum of academic studies of engineering. At the faculty of Electrical Engineering and Information Technology an interdisciplinary project is part of the bachelor program to address these topics. Since the summer term 2020 most courses changed to online mode during the Covid-19 crisis including the interdisciplinary projects. This online mode introduces additional challenges to the execution of the projects, both for the students as well as for the lecture. The challenges, but also the risks and chances of this kind of project courses are subject of this paper, based on five different interdisciplinary projects Y1 - 2021 U6 - https://doi.org/10.1109/EDUCON46332.2021.9454006 N1 - 2021 IEEE Global Engineering Education Conference (EDUCON), 21-23 April 2021, Vienna, Austria SP - 1175 EP - 1179 PB - IEEE CY - New York, NY ER - TY - CHAP A1 - Hofmann, Till A1 - Limpert, Nicolas A1 - Mataré, Victor A1 - Ferrein, Alexander A1 - Lakemeyer, Gerhard T1 - Winning the RoboCup Logistics League with Fast Navigation, Precise Manipulation, and Robust Goal Reasoning T2 - RoboCup 2019: Robot World Cup XXIII. RoboCup Y1 - 2019 SN - 978-3-030-35699-6 U6 - https://doi.org/10.1007/978-3-030-35699-6_41 N1 - Lecture Notes in Computer Science, vol 11531 SP - 504 EP - 516 PB - Springer CY - Cham ER - TY - CHAP A1 - Goeckel, Tom A1 - Schiffer, Stefan A1 - Wagner, Hermann A1 - Lakemeyer, Gerhard T1 - The Video Conference Tool Robot ViCToR T2 - Intelligent Robotics and Applications : 8th International Conference, ICIRA 2015, Portsmouth, UK, August 24-27, 2015, Proceedings, Part II N2 - We present a robotic tool that autonomously follows a conversation to enable remote presence in video conferencing. When humans participate in a meeting with the help of video conferencing tools, it is crucial that they are able to follow the conversation both with acoustic and visual input. To this end, we design and implement a video conferencing tool robot that uses binaural sound source localization as its main source to autonomously orient towards the currently talking speaker. To increase robustness of the acoustic cue against noise we supplement the sound localization with a source detection stage. Also, we include a simple onset detector to retain fast response times. Since we only use two microphones, we are confronted with ambiguities on whether a source is in front or behind the device. We resolve these ambiguities with the help of face detection and additional moves. We tailor the system to our target scenarios in experiments with a four minute scripted conversation. In these experiments we evaluate the influence of different system settings on the responsiveness and accuracy of the device. Y1 - 2015 SN - 978-3-319-22876-1 U6 - https://doi.org/10.1007/978-3-319-22876-1_6 N1 - Lecture Notes in Computer Science ; 9245 SP - 61 EP - 73 PB - Springer ER - TY - JOUR A1 - Franko, Josef A1 - Du, Shengzhi A1 - Kallweit, Stephan A1 - Duelberg, Enno Sebastian A1 - Engemann, Heiko T1 - Design of a Multi-Robot System for Wind Turbine Maintenance JF - Energies N2 - The maintenance of wind turbines is of growing importance considering the transition to renewable energy. This paper presents a multi-robot-approach for automated wind turbine maintenance including a novel climbing robot. Currently, wind turbine maintenance remains a manual task, which is monotonous, dangerous, and also physically demanding due to the large scale of wind turbines. Technical climbers are required to work at significant heights, even in bad weather conditions. Furthermore, a skilled labor force with sufficient knowledge in repairing fiber composite material is rare. Autonomous mobile systems enable the digitization of the maintenance process. They can be designed for weather-independent operations. This work contributes to the development and experimental validation of a maintenance system consisting of multiple robotic platforms for a variety of tasks, such as wind turbine tower and rotor blade service. In this work, multicopters with vision and LiDAR sensors for global inspection are used to guide slower climbing robots. Light-weight magnetic climbers with surface contact were used to analyze structure parts with non-destructive inspection methods and to locally repair smaller defects. Localization was enabled by adapting odometry for conical-shaped surfaces considering additional navigation sensors. Magnets were suitable for steel towers to clamp onto the surface. A friction-based climbing ring robot (SMART— Scanning, Monitoring, Analyzing, Repair and Transportation) completed the set-up for higher payload. The maintenance period could be extended by using weather-proofed maintenance robots. The multi-robot-system was running the Robot Operating System (ROS). Additionally, first steps towards machine learning would enable maintenance staff to use pattern classification for fault diagnosis in order to operate safely from the ground in the future. Y1 - 2020 U6 - https://doi.org/10.3390/en13102552 SN - 1996-1073 VL - 13 IS - 10 SP - Article 2552 PB - MDPI CY - Basel ER - TY - JOUR A1 - Ferrein, Alexander A1 - Steinbauer, Gerald T1 - 20 Years of RoboCup - A Subjective Retrospection JF - KI - Künstliche Intelligenz N2 - This summer, RoboCup competitions were held for the 20th time in Leipzig, Germany. It was the second time that RoboCup took place in Germany, 10 years after the 2006 RoboCup in Bremen. In this article, we give an overview on the latest developments of RoboCup and what happened in the different leagues over the last decade. With its 20th edition, RoboCup clearly is a success story and a role model for robotics competitions. From our personal view point, we acknowledge this by giving a retrospection about what makes RoboCup such a success. Y1 - 2016 U6 - https://doi.org/10.1007/s13218-016-0449-5 SN - 1610-1987 VL - 30 IS - 3 SP - 225 EP - 232 PB - Springer CY - Berlin ER - TY - JOUR A1 - Ferrein, Alexander A1 - Steinbauer, Gerald T1 - Looking back on 20 Years of RoboCup JF - KI - Künstliche Intelligenz Y1 - 2016 U6 - https://doi.org/10.1007/s13218-016-0443-y SN - 1610-1987 VL - 30 IS - 3-4 SP - 321 EP - 323 PB - Springer CY - Berlin ER - TY - JOUR A1 - Ferrein, Alexander A1 - Steinbauer, Gerald T1 - The Interplay of Aldebaran and RoboCup JF - KI - Künstliche Intelligenz Y1 - 2016 U6 - https://doi.org/10.1007/s13218-016-0440-1 SN - 1610-1987 VL - 30 IS - 3-4 SP - 325 EP - 326 PB - Springer CY - Berlin ER - TY - CHAP A1 - Ferrein, Alexander A1 - Scholl, Ingrid A1 - Neumann, Tobias A1 - Krückel, Kai A1 - Schiffer, Stefan T1 - A system for continuous underground site mapping and exploration Y1 - 2019 U6 - https://doi.org/10.5772/intechopen.85859 ER - TY - CHAP A1 - Ferrein, Alexander A1 - Meeßen, Marcus A1 - Limpert, Nicolas A1 - Schiffer, Stefan ED - Lepuschitz, Wilfried T1 - Compiling ROS schooling curricula via contentual taxonomies T2 - Robotics in Education N2 - The Robot Operating System (ROS) is the current de-facto standard in robot middlewares. The steadily increasing size of the user base results in a greater demand for training as well. User groups range from students in academia to industry professionals with a broad spectrum of developers in between. To deliver high quality training and education to any of these audiences, educators need to tailor individual curricula for any such training. In this paper, we present an approach to ease compiling curricula for ROS trainings based on a taxonomy of the teaching contents. The instructor can select a set of dedicated learning units and the system will automatically compile the teaching material based on the dependencies of the units selected and a set of parameters for a particular training. We walk through an example training to illustrate our work. Y1 - 2021 SN - 978-3-030-67411-3 U6 - https://doi.org/10.1007/978-3-030-67411-3_5 N1 - RiE: International Conference on Robotics in Education (RiE); Advances in Intelligent Systems and Computing book series (AISC, volume 1316) SP - 49 EP - 60 PB - Springer CY - Cham ER - TY - CHAP A1 - Ferrein, Alexander A1 - Maier, Christopher A1 - Mühlbacher, Clemens A1 - Niemüller, Tim A1 - Steinbauer, Gerald A1 - Vassos, Stravros T1 - Controlling logistics robots with the action-based language YAGI T2 - Intelligent Robotics and Applications: 9th International Conference, ICIRA 2016, Tokyo, Japan, August 22-24, 2016, Proceedings, Part I Y1 - 2016 SN - 978-3-319-43505-3 (Print) SN - 978-3-319-43506-0 (Online) U6 - https://doi.org/10.1007/978-3-319-43506-0_46 N1 - Series: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) VL - 9834 SP - 525 EP - 537 PB - Springer ER - TY - CHAP A1 - Ferrein, Alexander A1 - Maier, Christopher A1 - Mühlbacher, Clemens A1 - Niemueller, Tim A1 - Steinbauer, Gerald A1 - Vassos, Stravros T1 - Controlling Logistics Robots with the Action-based Language YAGI T2 - Proceedings of the 2015 IROS Workshop on Workshop on Task Planning for Intelligent Robots in Service and Manufacturing Y1 - 2015 ER - TY - CHAP A1 - Ferrein, Alexander A1 - Kallweit, Stephan A1 - Scholl, Ingrid A1 - Reichert, Walter T1 - Learning to Program Mobile Robots in the ROS Summer School Series T2 - Proceedings 6th International Conference on Robotics in Education (RiE 15) N2 - The main objective of our ROS Summer School series is to introduce MA level students to program mobile robots with the Robot Operating System (ROS). ROS is a robot middleware that is used my many research institutions world-wide. Therefore, many state-of-the-art algorithms of mobile robotics are available in ROS and can be deployed very easily. As a basic robot platform we deploy a 1/10 RC cart that is wquipped with an Arduino micro-controller to control the servo motors, and an embedded PC that runs ROS. In two weeks, participants get to learn the basics of mobile robotics hands-on. We describe our teaching concepts and our curriculum and report on the learning success of our students. Y1 - 2015 ER - TY - CHAP A1 - Ferrein, Alexander A1 - Bharatheesha, Mukunda A1 - Schiffer, Stefan A1 - Corbato, Carlos Hernandez T1 - TRROS 2018 : Teaching Robotics with ROS Workshop at ERF 2018; Proceedings of the Workshop on Teaching Robotics with ROS (held at ERF 2018), co-located with European Robotics Forum 2018 (ERF 2018), Tampere, Finland, March 15th, 2018 T2 - CEUR Workshop Proceedings Y1 - 2019 SN - 1613-0073 IS - Vol-2329 ER -