TY - JOUR A1 - Monakhova, Yulia A1 - Diehl, Bernd W.K. T1 - Novel approach of qNMR workflow by standardization using 2H integral: Application to any intrinsic calibration standard JF - Talanta N2 - Quantitative nuclear magnetic resonance (qNMR) is routinely performed by the internal or external standardization. The manuscript describes a simple alternative to these common workflows by using NMR signal of another active nuclei of calibration compound. For example, for any arbitrary compound quantification by NMR can be based on the use of an indirect concentration referencing that relies on a solvent having both 1H and 2H signals. To perform high-quality quantification, the deuteration level of the utilized deuterated solvent has to be estimated. In this contribution the new method was applied to the determination of deuteration levels in different deuterated solvents (MeOD, ACN, CDCl3, acetone, benzene, DMSO-d6). Isopropanol-d6, which contains a defined number of deuterons and protons, was used for standardization. Validation characteristics (precision, accuracy, robustness) were calculated and the results showed that the method can be used in routine practice. Uncertainty budget was also evaluated. In general, this novel approach, using standardization by 2H integral, benefits from reduced sample preparation steps and uncertainties, and can be applied in different application areas (purity determination, forensics, pharmaceutical analysis, etc.). KW - qNMR KW - Deuterium NMR KW - Deuterated solvents KW - Standardization Y1 - 2021 SN - 0039-9140 U6 - https://doi.org/10.1016/j.talanta.2020.121504 VL - 222 IS - Article number: 121504 PB - Elsevier ER - TY - JOUR A1 - Monakhova, Yulia A1 - Diehl, Bernd W. K. T1 - A step towards optimization of the qNMR workflow: proficiency testing exercise at an GxP-accredited laboratory JF - Applied Magnetic Resonance N2 - Quantitative nuclear magnetic resonance (qNMR) is considered as a powerful tool for multicomponent mixture analysis as well as for the purity determination of single compounds. Special attention is currently paid to the training of operators and study directors involved in qNMR testing. To assure that only qualified personnel are used for sample preparation at our GxP-accredited laboratory, weighing test was proposed. Sixteen participants performed six-fold weighing of the binary mixture of dibutylated hydroxytoluene (BHT) and 1,2,4,5-tetrachloro-3-nitrobenzene (TCNB). To evaluate the quality of data analysis, all spectra were evaluated manually by a qNMR expert and using in-house developed automated routine. The results revealed that mean values are comparable and both evaluation approaches are free of systematic error. However, automated evaluation resulted in an approximately 20% increase in precision. The same findings were revealed for qNMR analysis of 32 compounds used in pharmaceutical industry. Weighing test by six-fold determination in binary mixtures and automated qNMR methodology can be recommended as efficient tools for evaluating staff proficiency. The automated qNMR method significantly increases throughput and precision of qNMR for routine measurements and extends application scope of qNMR. Y1 - 2021 U6 - https://doi.org/10.1007/s00723-021-01324-3 SN - 1613-7507 N1 - Corresponding author: Yulia Monakhova VL - 52 SP - 581 EP - 593 PB - Springer Nature CY - Wien ER - TY - JOUR A1 - Engelmann, Ulrich M. A1 - Shalaby, Ahmed A1 - Shasha, Carolyn A1 - Krishnan, Kannan M. A1 - Krause, Hans-Joachim T1 - Comparative modeling of frequency mixing measurements of magnetic nanoparticles using micromagnetic simulations and Langevin theory JF - Nanomaterials N2 - Dual frequency magnetic excitation of magnetic nanoparticles (MNP) enables enhanced biosensing applications. This was studied from an experimental and theoretical perspective: nonlinear sum-frequency components of MNP exposed to dual-frequency magnetic excitation were measured as a function of static magnetic offset field. The Langevin model in thermodynamic equilibrium was fitted to the experimental data to derive parameters of the lognormal core size distribution. These parameters were subsequently used as inputs for micromagnetic Monte-Carlo (MC)-simulations. From the hysteresis loops obtained from MC-simulations, sum-frequency components were numerically demodulated and compared with both experiment and Langevin model predictions. From the latter, we derived that approximately 90% of the frequency mixing magnetic response signal is generated by the largest 10% of MNP. We therefore suggest that small particles do not contribute to the frequency mixing signal, which is supported by MC-simulation results. Both theoretical approaches describe the experimental signal shapes well, but with notable differences between experiment and micromagnetic simulations. These deviations could result from Brownian relaxations which are, albeit experimentally inhibited, included in MC-simulation, or (yet unconsidered) cluster-effects of MNP, or inaccurately derived input for MC-simulations, because the largest particles dominate the experimental signal but concurrently do not fulfill the precondition of thermodynamic equilibrium required by Langevin theory. KW - Magnetic nanoparticles KW - Frequency mixing magnetic detection KW - Langevin theory KW - Micromagnetic simulation KW - Nonequilibrium dynamics Y1 - 2021 SN - 2079-4991 U6 - https://doi.org/10.3390/nano11051257 N1 - This article belongs to the Special Issue Applications and Properties of Magnetic Nanoparticles VL - 11 IS - 5 SP - 1 EP - 16 PB - MDPI CY - Basel ER - TY - JOUR A1 - Saretzki, Charlotte A1 - Bergmann, Ole A1 - Dahmann, Peter A1 - Janser, Frank A1 - Keimer, Jona A1 - Machado, Patricia A1 - Morrison, Audry A1 - Page, Henry A1 - Pluta, Emil A1 - Stübing, Felix A1 - Küpper, Thomas T1 - Are small airplanes safe with regards to COVID-19 transmission? JF - Journal of Travel Medicine Y1 - 2021 U6 - https://doi.org/10.1093/jtm/taab105 SN - 1708-8305 VL - 28 IS - 7 PB - Oxford University Press CY - Oxford ER - TY - JOUR A1 - Karschuck, Tobias A1 - Kaulen, Corinna A1 - Poghossian, Arshak A1 - Wagner, Patrick H. A1 - Schöning, Michael Josef T1 - Gold nanoparticle-modified capacitive field-effect sensors: Studying the surface density of nanoparticles and coupling of charged polyelectrolyte macromolecules JF - Electrochemical Science Advances N2 - The coupling of ligand-stabilized gold nanoparticles with field-effect devices offers new possibilities for label-free biosensing. In this work, we study the immobilization of aminooctanethiol-stabilized gold nanoparticles (AuAOTs) on the silicon dioxide surface of a capacitive field-effect sensor. The terminal amino group of the AuAOT is well suited for the functionalization with biomolecules. The attachment of the positively-charged AuAOTs on a capacitive field-effect sensor was detected by direct electrical readout using capacitance-voltage and constant capacitance measurements. With a higher particle density on the sensor surface, the measured signal change was correspondingly more pronounced. The results demonstrate the ability of capacitive field-effect sensors for the non-destructive quantitative validation of nanoparticle immobilization. In addition, the electrostatic binding of the polyanion polystyrene sulfonate to the AuAOT-modified sensor surface was studied as a model system for the label-free detection of charged macromolecules. Most likely, this approach can be transferred to the label-free detection of other charged molecules such as enzymes or antibodies. KW - polystyrene sulfonate KW - gold nanoparticles KW - field-effect sensor KW - detection of charged macromolecules KW - capacitive EIS sensor Y1 - 2021 U6 - https://doi.org/10.1002/elsa.202100179 SN - 0938-5193 VL - 2 IS - 5 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Hackl, Michael A1 - Buess, Eduard A1 - Kammerlohr, Sandra A1 - Nacov, Julia A1 - Staat, Manfred A1 - Leschinger, Tim A1 - Müller, Lars P. A1 - Wegmann, Kilian T1 - A "comma sign"-directed subscapularis repair in anterosuperior rotator cuff tears yields biomechanical advantages in a cadaveric model JF - The american journal of sports medicine N2 - Background: Additional stabilization of the “comma sign” in anterosuperior rotator cuff repair has been proposed to provide biomechanical benefits regarding stability of the repair. Purpose: This in vitro investigation aimed to investigate the influence of a comma sign–directed reconstruction technique for anterosuperior rotator cuff tears on the primary stability of the subscapularis tendon repair. Study Design: Controlled laboratory study. Methods: A total of 18 fresh-frozen cadaveric shoulders were used in this study. Anterosuperior rotator cuff tears (complete full-thickness tear of the supraspinatus and subscapularis tendons) were created, and supraspinatus repair was performed with a standard suture bridge technique. The subscapularis was repaired with either a (1) single-row or (2) comma sign technique. A high-resolution 3D camera system was used to analyze 3-mm and 5-mm gap formation at the subscapularis tendon-bone interface upon incremental cyclic loading. Moreover, the ultimate failure load of the repair was recorded. A Mann-Whitney test was used to assess significant differences between the 2 groups. Results: The comma sign repair withstood significantly more loading cycles than the single-row repair until 3-mm and 5-mm gap formation occurred (P≤ .047). The ultimate failure load did not reveal any significant differences when the 2 techniques were compared (P = .596). Conclusion: The results of this study show that additional stabilization of the comma sign enhanced the primary stability of subscapularis tendon repair in anterosuperior rotator cuff tears. Although this stabilization did not seem to influence the ultimate failure load, it effectively decreased the micromotion at the tendon-bone interface during cyclic loading. Clinical Relevance: The proposed technique for stabilization of the comma sign has shown superior biomechanical properties in comparison with a single-row repair and might thus improve tendon healing. Further clinical research will be necessary to determine its influence on the functional outcome. Y1 - 2021 U6 - https://doi.org/10.1177/03635465211031506 SN - 1552-3365 SN - 0363-5465 VL - 49 IS - 12 SP - 3212 EP - 3217 PB - Sage CY - London ER - TY - JOUR A1 - Gaigall, Daniel T1 - Test for Changes in the Modeled Solvency Capital Requirement of an Internal Risk Model JF - ASTIN Bulletin N2 - In the context of the Solvency II directive, the operation of an internal risk model is a possible way for risk assessment and for the determination of the solvency capital requirement of an insurance company in the European Union. A Monte Carlo procedure is customary to generate a model output. To be compliant with the directive, validation of the internal risk model is conducted on the basis of the model output. For this purpose, we suggest a new test for checking whether there is a significant change in the modeled solvency capital requirement. Asymptotic properties of the test statistic are investigated and a bootstrap approximation is justified. A simulation study investigates the performance of the test in the finite sample case and confirms the theoretical results. The internal risk model and the application of the test is illustrated in a simplified example. The method has more general usage for inference of a broad class of law-invariant and coherent risk measures on the basis of a paired sample. KW - Bootstrap KW - Empirical process KW - Functional Delta Method KW - Hadamard differentiability KW - Paired sample Y1 - 2021 U6 - https://doi.org/10.1017/asb.2021.20 SN - 1783-1350 VL - 51 IS - 3 SP - 813 EP - 837 PB - Cambridge Univ. Press CY - Cambridge ER - TY - JOUR A1 - Poghossian, Arshak A1 - Welden, Rene A1 - Buniatyan, Vahe V. A1 - Schöning, Michael Josef T1 - An Array of On-Chip Integrated, Individually Addressable Capacitive Field-Effect Sensors with Control Gate: Design and Modelling JF - Sensors N2 - The on-chip integration of multiple biochemical sensors based on field-effect electrolyte-insulator-semiconductor capacitors (EISCAP) is challenging due to technological difficulties in realization of electrically isolated EISCAPs on the same Si chip. In this work, we present a new simple design for an array of on-chip integrated, individually electrically addressable EISCAPs with an additional control gate (CG-EISCAP). The existence of the CG enables an addressable activation or deactivation of on-chip integrated individual CG-EISCAPs by simple electrical switching the CG of each sensor in various setups, and makes the new design capable for multianalyte detection without cross-talk effects between the sensors in the array. The new designed CG-EISCAP chip was modelled in so-called floating/short-circuited and floating/capacitively-coupled setups, and the corresponding electrical equivalent circuits were developed. In addition, the capacitance-voltage curves of the CG-EISCAP chip in different setups were simulated and compared with that of a single EISCAP sensor. Moreover, the sensitivity of the CG-EISCAP chip to surface potential changes induced by biochemical reactions was simulated and an impact of different parameters, such as gate voltage, insulator thickness and doping concentration in Si, on the sensitivity has been discussed. KW - equivalent circuit KW - multianalyte detection KW - control gate KW - on-chip integrated addressable EISCAP sensors KW - capacitive field-effect sensor Y1 - 2021 U6 - https://doi.org/10.3390/s21186161 SN - 1424-8220 N1 - This article belongs to the Special Issue "Field-Effect Sensors: From pH Sensing to Biosensing" VL - 21 IS - 18 SP - 17 PB - MDPI CY - Basel ER - TY - CHAP A1 - Engelmann, Ulrich M. A1 - Shasha, Carolyn A1 - Slabu, Ioana T1 - Magnetic nanoparticle relaxation in biomedical application: focus on simulating nanoparticle heating T2 - Magnetic nanoparticles in human health and medicine Y1 - 2021 SN - 978-1-119-75467-1 SP - 327 EP - 354 PB - Wiley-Blackwell CY - Hoboken, New Jeersey ER - TY - JOUR A1 - Gorzalka, Philip A1 - Schmiedt, Jacob Estevam A1 - Schorn, Christian T1 - Automated Generation of an Energy Simulation Model for an Existing Building from UAV Imagery JF - Buildings N2 - An approach to automatically generate a dynamic energy simulation model in Modelica for a single existing building is presented. It aims at collecting data about the status quo in the preparation of energy retrofits with low effort and costs. The proposed method starts from a polygon model of the outer building envelope obtained from photogrammetrically generated point clouds. The open-source tools TEASER and AixLib are used for data enrichment and model generation. A case study was conducted on a single-family house. The resulting model can accurately reproduce the internal air temperatures during synthetical heating up and cooling down. Modelled and measured whole building heat transfer coefficients (HTC) agree within a 12% range. A sensitivity analysis emphasises the importance of accurate window characterisations and justifies the use of a very simplified interior geometry. Uncertainties arising from the use of archetype U-values are estimated by comparing different typologies, with best- and worst-case estimates showing differences in pre-retrofit heat demand of about ±20% to the average; however, as the assumptions made are permitted by some national standards, the method is already close to practical applicability and opens up a path to quickly estimate possible financial and energy savings after refurbishment. KW - Modelica KW - heat transfer coefficient KW - heat demand KW - building energy modelling KW - building energy simulation Y1 - 2021 U6 - https://doi.org/10.3390/buildings11090380 SN - 2075-5309 N1 - This article belongs to the Special Issue "Application of Computer Technology in Buildings" VL - 11 IS - 9 PB - MDPI CY - Basel ER - TY - CHAP A1 - Bornheim, Tobias A1 - Grieger, Niklas A1 - Bialonski, Stephan T1 - FHAC at GermEval 2021: Identifying German toxic, engaging, and fact-claiming comments with ensemble learning T2 - Proceedings of the GermEval 2021 Workshop on the Identification of Toxic, Engaging, and Fact-Claiming Comments : 17th Conference on Natural Language Processing KONVENS 2021 Y1 - 2021 U6 - https://doi.org/10.48415/2021/fhw5-x128 N1 - KONVENS (Konferenz zur Verarbeitung natürlicher Sprache/Conference on Natural Language Processing) 2021, 6. - 9. September 2021, Düsseldorf SP - 105 EP - 111 PB - Heinrich Heine University CY - Düsseldorf ER - TY - CHAP A1 - Schopen, Oliver A1 - Kemper, Hans A1 - Esch, Thomas T1 - Development of a comparison methodology and evaluation matrix for electrically driven compressors in ICE and FC T2 - Proceedings of the 1st UNITED – Southeast Asia Automotive Interest Group (SAIG) International Conference N2 - In addition to electromobility and alternative drive systems, a focus is set on electrically driven compressors (EDC), with a high potential for increasing the efficiency of internal combustion engines (ICE) and fuel cells [01]. The primary objective is to increase the ICE torque, provided independently of the ICE speed by compressing the intake air and consequently the ICE filling level supported by the compressor. For operation independent from the ICE speed, the EDC compressor is decoupled from the turbine by using an electric compressor motor (CM) instead of the turbine. ICE performances can be increased by the use of EDC where individual compressor parameters are adapted to the respective application area [02] [03]. This task contains great challenges, increased by demands with regard to pollutant reduction while maintaining constant performance and reduced fuel consumption. The FH-Aachen is equipped with an EDC test bench which enables EDC-investigations in various configurations and operating modes. Characteristic properties of different compressors can be determined, which build the basis for a comparison methodology. Subject of this project is the development of a comparison methodology for EDC with an associated evaluation method and a defined overall evaluation method. For the application of this comparison methodology, corresponding series of measurements are carried out on the EDC test bench using an appropriate test device. KW - electro mobility KW - fuel cell KW - internal combustion engine KW - electrically driven compressors Y1 - 2021 SN - 978-3-902103-94-9 N1 - 1st UNITED-SAIG International Conference, 21-22 APR 2021, Chulalongkorn University, Thailand SP - 45 EP - 46 PB - FH Joanneum CY - Graz ER - TY - JOUR A1 - Heuermann, Holger A1 - Harzheim, Thomas A1 - Cronenbroeck, Tobias T1 - First SIMO harmonic radar based on the SFCW concept and the HR transfer function JF - Remote sensing N2 - This paper presents a new SIMO radar system based on a harmonic radar (HR) stepped frequency continuous wave (SFCW) architecture. Simple tags that can be electronically individually activated and deactivated via a DC control voltage were developed and combined to form an MO array field. This HR operates in the entire 2.45 GHz ISM band for transmitting the illumination signal and receives at twice the stimulus frequency and bandwidth centered around 4.9 GHz. This paper presents the development, the basic theory of a HR system for the characterization of objects placed into the propagation path in-between the radar and the reflectors (similar to a free-space measurement with a network analyzer) as well as first measurements performed by the system. Further detailed measurement series will be made available later on to other researchers to develop AI and machine learning based signal processing routines or synthetic aperture radar algorithms for imaging, object recognition, and feature extraction. For this purpose, the necessary information is published in this paper. It is explained in detail why this SIMO-HR can be an attractive solution augmenting or replacing existing systems for radar measurements in production technology for material under test measurements and as a simplified MIMO system. The novel HR transfer function, which is a basis for researchers and developers for material characterization or imaging algorithms, is introduced and metrologically verified in a well traceable coaxial setup. KW - MUT measurement; scanner KW - transponder KW - SFCW KW - harmonic radar KW - nonlinear radar Y1 - 2021 U6 - https://doi.org/10.3390/rs13245088 SN - 2072-4292 N1 - This article belongs to the Special Issue "Nonlinear Junction Detection and Harmonic Radar" VL - 13 IS - 24 PB - MDPI CY - Basel ER - TY - JOUR A1 - Richter, Charlotte A1 - Braunstein, Bjoern A1 - Stäudle, Benjamin A1 - Attias, Julia A1 - Suess, Alexander A1 - Weber, Tobias A1 - Mileva, Katja N. A1 - Rittweger, Joern A1 - Green, David A. A1 - Albracht, Kirsten T1 - Gastrocnemius medialis contractile behavior is preserved during 30% body weight supported gait training JF - Frontiers in Sports and Active Living N2 - Rehabilitative body weight supported gait training aims at restoring walking function as a key element in activities of daily living. Studies demonstrated reductions in muscle and joint forces, while kinematic gait patterns appear to be preserved with up to 30% weight support. However, the influence of body weight support on muscle architecture, with respect to fascicle and series elastic element behavior is unknown, despite this having potential clinical implications for gait retraining. Eight males (31.9 ± 4.7 years) walked at 75% of the speed at which they typically transition to running, with 0% and 30% body weight support on a lower-body positive pressure treadmill. Gastrocnemius medialis fascicle lengths and pennation angles were measured via ultrasonography. Additionally, joint kinematics were analyzed to determine gastrocnemius medialis muscle–tendon unit lengths, consisting of the muscle's contractile and series elastic elements. Series elastic element length was assessed using a muscle–tendon unit model. Depending on whether data were normally distributed, a paired t-test or Wilcoxon signed rank test was performed to determine if body weight supported walking had any effects on joint kinematics and fascicle–series elastic element behavior. Walking with 30% body weight support had no statistically significant effect on joint kinematics and peak series elastic element length. Furthermore, at the time when peak series elastic element length was achieved, and on average across the entire stance phase, muscle–tendon unit length, fascicle length, pennation angle, and fascicle velocity were unchanged with respect to body weight support. In accordance with unchanged gait kinematics, preservation of fascicle–series elastic element behavior was observed during walking with 30% body weight support, which suggests transferability of gait patterns to subsequent unsupported walking. KW - AlterG KW - rehabilitation KW - gait KW - walking KW - ultrasound imaging KW - series elastic element behavior KW - muscle fascicle behavior KW - unloading Y1 - 2021 U6 - https://doi.org/10.3389/fspor.2020.614559 SN - 2624-9367 VL - 2021 IS - 2 PB - Frontiers CY - Lausanne ER - TY - JOUR A1 - Bergs, Michel A1 - Monakhova, Yulia A1 - Diehl, Bernd W. A1 - Konow, Christopher A1 - Völkering, Georg A1 - Pude, Ralf A1 - Schulze, Margit T1 - Lignins isolated via catalyst-free organosolv pulping from Miscanthus x giganteus, M. sinensis, M. robustus and M. nagara: a comparative study JF - Molecules N2 - As a low-input crop, Miscanthus offers numerous advantages that, in addition to agricultural applications, permits its exploitation for energy, fuel, and material production. Depending on the Miscanthus genotype, season, and harvest time as well as plant component (leaf versus stem), correlations between structure and properties of the corresponding isolated lignins differ. Here, a comparative study is presented between lignins isolated from M. x giganteus, M. sinensis, M. robustus and M. nagara using a catalyst-free organosolv pulping process. The lignins from different plant constituents are also compared regarding their similarities and differences regarding monolignol ratio and important linkages. Results showed that the plant genotype has the weakest influence on monolignol content and interunit linkages. In contrast, structural differences are more significant among lignins of different harvest time and/or season. Analyses were performed using fast and simple methods such as nuclear magnetic resonance (NMR) spectroscopy. Data was assigned to four different linkages (A: β-O-4 linkage, B: phenylcoumaran, C: resinol, D: β-unsaturated ester). In conclusion, A content is particularly high in leaf-derived lignins at just under 70% and significantly lower in stem and mixture lignins at around 60% and almost 65%. The second most common linkage pattern is D in all isolated lignins, the proportion of which is also strongly dependent on the crop portion. Both stem and mixture lignins, have a relatively high share of approximately 20% or more (maximum is M. sinensis Sin2 with over 30%). In the leaf-derived lignins, the proportions are significantly lower on average. Stem samples should be chosen if the highest possible lignin content is desired, specifically from the M. x giganteus genotype, which revealed lignin contents up to 27%. Due to the better frost resistance and higher stem stability, M. nagara offers some advantages compared to M. x giganteus. Miscanthus crops are shown to be very attractive lignocellulose feedstock (LCF) for second generation biorefineries and lignin generation in Europe. Y1 - 2021 U6 - https://doi.org/10.3390/molecules26040842 SN - 1420-3049 N1 - Special Issue Lignin – A Natural Resource with Huge Potential https://www.mdpi.com/journal/molecules/special_issues/lignin_natural VL - 26 IS - 4 PB - MDPI CY - Basel ER - TY - CHAP A1 - Mohan, Nijanthan A1 - Groß, Rolf Fritz A1 - Menzel, Karsten A1 - Theis, Fabian T1 - Opportunities and Challenges in the Implementation of Building Information Modeling for Prefabrication of Heating, Ventilation and Air Conditioning Systems in Small and Medium-Sized Contracting Companies in Germany – A Case Study T2 - WIT Transactions on The Built Environment, Vol. 205 N2 - Even though BIM (Building Information Modelling) is successfully implemented in most of the world, it is still in the early stages in Germany, since the stakeholders are sceptical of its reliability and efficiency. The purpose of this paper is to analyse the opportunities and obstacles to implementing BIM for prefabrication. Among all other advantages of BIM, prefabrication is chosen for this paper because it plays a vital role in creating an impact on the time and cost factors of a construction project. The project stakeholders and participants can explicitly observe the positive impact of prefabrication, which enables the breakthrough of the scepticism factor among the small-scale construction companies. The analysis consists of the development of a process workflow for implementing prefabrication in building construction followed by a practical approach, which was executed with two case studies. It was planned in such a way that, the first case study gives a first-hand experience for the workers at the site on the BIM model so that they can make much use of the created BIM model, which is a better representation compared to the traditional 2D plan. The main aim of the first case study is to create a belief in the implementation of BIM Models, which was succeeded by the execution of offshore prefabrication in the second case study. Based on the case studies, the time analysis was made and it is inferred that the implementation of BIM for prefabrication can reduce construction time, ensures minimal wastes, better accuracy, less problem-solving at the construction site. It was observed that this process requires more planning time, better communication between different disciplines, which was the major obstacle for successful implementation. This paper was carried out from the perspective of small and medium-sized mechanical contracting companies for the private building sector in Germany. KW - building information modelling KW - HVAC KW - prefabrication KW - construction KW - small and medium scaled companies Y1 - 2021 U6 - https://doi.org/10.2495/BIM210101 SN - 1743-3509 N1 - 4th International Conference on Building Information Modelling (BIM) in Design, Construction and Operations, 1–3 September 2021. Santiago de Compostela, Spain SP - 117 EP - 126 PB - WIT Press CY - Southampton ER - TY - JOUR A1 - Burger, René A1 - Rumpf, Jessica A1 - Do, Xuan Tung A1 - Monakhova, Yulia A1 - Diehl, Bernd W. K. A1 - Rehahn, Matthias A1 - Schulze, Margit T1 - Is NMR combined with multivariate regression applicable for the molecular weight determination of randomly cross-linked polymers such as lignin? JF - ACS Omega N2 - The molecular weight properties of lignins are one of the key elements that need to be analyzed for a successful industrial application of these promising biopolymers. In this study, the use of 1H NMR as well as diffusion-ordered spectroscopy (DOSY NMR), combined with multivariate regression methods, was investigated for the determination of the molecular weight (Mw and Mn) and the polydispersity of organosolv lignins (n = 53, Miscanthus x giganteus, Paulownia tomentosa, and Silphium perfoliatum). The suitability of the models was demonstrated by cross validation (CV) as well as by an independent validation set of samples from different biomass origins (beech wood and wheat straw). CV errors of ca. 7–9 and 14–16% were achieved for all parameters with the models from the 1H NMR spectra and the DOSY NMR data, respectively. The prediction errors for the validation samples were in a similar range for the partial least squares model from the 1H NMR data and for a multiple linear regression using the DOSY NMR data. The results indicate the usefulness of NMR measurements combined with multivariate regression methods as a potential alternative to more time-consuming methods such as gel permeation chromatography. Y1 - 2021 U6 - https://doi.org/10.1021/acsomega.1c03574 SN - 2470-1343 VL - 6 IS - 44 SP - 29516 EP - 29524 PB - ACS Publications CY - Washington, DC ER - TY - JOUR A1 - Monakhova, Yulia A1 - Diehl, Bernd W. K. T1 - Simplification of NMR Workflows by Standardization Using 2H Integral of Deuterated Solvent as Applied to Aloe vera Preparations JF - Applied Magnetic Resonance N2 - In this study, a recently proposed NMR standardization approach by 2H integral of deuterated solvent for quantitative multicomponent analysis of complex mixtures is presented. As a proof of principle, the existing NMR routine for the analysis of Aloe vera products was modified. Instead of using absolute integrals of targeted compounds and internal standard (nicotinamide) from 1H-NMR spectra, quantification was performed based on the ratio of a particular 1H-NMR compound integral and 2H-NMR signal of deuterated solvent D2O. Validation characteristics (linearity, repeatability, accuracy) were evaluated and the results showed that the method has the same precision as internal standardization in case of multicomponent screening. Moreover, a dehydration process by freeze drying is not necessary for the new routine. Now, our NMR profiling of A. vera products needs only limited sample preparation and data processing. The new standardization methodology provides an appealing alternative for multicomponent NMR screening. In general, this novel approach, using standardization by 2H integral, benefits from reduced sample preparation steps and uncertainties, and is recommended in different application areas (purity determination, forensics, pharmaceutical analysis, etc.). Y1 - 2021 U6 - https://doi.org/10.1007/s00723-021-01393-4 SN - 1613-7507 VL - 52 IS - 11 SP - 1591 EP - 1600 PB - Springer CY - Cham ER - TY - JOUR A1 - Burmistrova, Natalia A. A1 - Soboleva, Polina M. A1 - Monakhova, Yulia T1 - Is infrared spectroscopy combined with multivariate analysis a promising tool for heparin authentication? JF - Journal of Pharmaceutical and Biomedical Analysis N2 - The investigation of the possibility to determine various characteristics of powder heparin (n = 115) was carried out with infrared spectroscopy. The evaluation of heparin samples included several parameters such as purity grade, distributing company, animal source as well as heparin species (i.e. Na-heparin, Ca-heparin, and heparinoids). Multivariate analysis using principal component analysis (PCA), soft independent modelling of class analogy (SIMCA), and partial least squares – discriminant analysis (PLS-DA) were applied for the modelling of spectral data. Different pre-processing methods were applied to IR spectral data; multiplicative scatter correction (MSC) was chosen as the most relevant. Obtained results were confirmed by nuclear magnetic resonance (NMR) spectroscopy. Good predictive ability of this approach demonstrates the potential of IR spectroscopy and chemometrics for screening of heparin quality. This approach, however, is designed as a screening tool and is not considered as a replacement for either of the methods required by USP and FDA. KW - IR spectroscopy KW - Heparin KW - Authenticity KW - Principal component analysis KW - Soft independent modeling of class analogy Y1 - 2021 SN - 0731-7085 U6 - https://doi.org/10.1016/j.jpba.2020.113811 VL - 194 IS - Article number: 113811 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Pourshahidi, Ali Mohammad A1 - Achtsnicht, Stefan A1 - Nambipareechee, Mrinal Murali A1 - Offenhäusser, Andreas A1 - Krause, Hans-Joachim T1 - Multiplex detection of magnetic beads using offset field dependent frequency mixing magnetic detection JF - Sensors N2 - Magnetic immunoassays employing Frequency Mixing Magnetic Detection (FMMD) have recently become increasingly popular for quantitative detection of various analytes. Simultaneous analysis of a sample for two or more targets is desirable in order to reduce the sample amount, save consumables, and save time. We show that different types of magnetic beads can be distinguished according to their frequency mixing response to a two-frequency magnetic excitation at different static magnetic offset fields. We recorded the offset field dependent FMMD response of two different particle types at frequencies ƒ₁ + n⋅ƒ₂, n = 1, 2, 3, 4 with ƒ₁ = 30.8 kHz and ƒ₂ = 63 Hz. Their signals were clearly distinguishable by the locations of the extremes and zeros of their responses. Binary mixtures of the two particle types were prepared with different mixing ratios. The mixture samples were analyzed by determining the best linear combination of the two pure constituents that best resembled the measured signals of the mixtures. Using a quadratic programming algorithm, the mixing ratios could be determined with an accuracy of greater than 14%. If each particle type is functionalized with a different antibody, multiplex detection of two different analytes becomes feasible. KW - colorization KW - multiplex detection KW - frequency mixing magnetic detection KW - magnetic nanoparticles Y1 - 2021 U6 - https://doi.org/10.3390/s21175859 SN - 1424-8220 N1 - This article belongs to the Special Issue "Advanced Nanomaterial-Based Sensors for Biomedical Applications" VL - 21 IS - 17 PB - MDPI CY - Basel ER -