TY - CHAP A1 - Pfaff, Raphael A1 - Schmidt, Bernd A1 - Wilbring, Daniela A1 - Franzen, Julian T1 - Wagon4.0 – the smart wagon for improved integration into Industry 4.0 plants T2 - Proceedings of the International Heavy Haul Association STS Conference 2019 N2 - In many instances, freight vehicles exchange load or information with plants that are or will soon be Industry4.0 plants. The Wagon4.0 concept, as developed in close cooperation with e.g. port or mine operations, offers a maximum in railway operational efficiency while providing strong business cases already in the respective plant interaction. The Wagon4.0 consists of main components, a power supply, data network, sensors, actuators and an operating system, the so called WagonOS. The Wagon OS is implemented in a granular, self-sufficient manner, to allow basic features such as WiFi-Mesh and train christening in remote areas without network connection. Furthermore, the granularity of the operating system allows to extend the familiar app concept to freight rail rolling stock, making it possible to use specialised actuators for certain applications, e.g. an electrical parking brake or an auxiliary drive. In order to facilitate migration to the Wagon4.0 for existing fleets, a migration concept featuring five levels of technical adaptation was developed. The present paper investigates the benefits of Wagon4.0-implementations for the particular challenges of heavy haul operations by focusing on train christening, ep-assisted braking, autonomous last mile and traction boost operation as well as improved maintenance schedules Y1 - 2019 N1 - International Heavy Haul Association STS Conference, 10th to 14th June 2019, Narvik, Norway ER - TY - CHAP A1 - Finger, Felix A1 - Götten, Falk A1 - Braun, Carsten A1 - Bil, Cees T1 - On Aircraft Design Under the Consideration of Hybrid-Electric Propulsion Systems T2 - APISAT 2018: The Proceedings of the 2018 Asia-Pacific International Symposium on Aerospace Technology (APISAT 2018) N2 - A hybrid-electric propulsion system combines the advantages of fuel-based systems and battery powered systems and offers new design freedom. To take full advantage of this technology, aircraft designers must be aware of its key differences, compared to conventional, carbon-fuel based, propulsion systems. This paper gives an overview of the challenges and potential benefits associated with the design of aircraft that use hybrid-electric propulsion systems. It offers an introduction of the most popular hybrid-electric propulsion architectures and critically assess them against the conventional and fully electric propulsion configurations. The effects on operational aspects and design aspects are covered. Special consideration is given to the application of hybrid-electric propulsion technology to both unmanned and vertical take-off and landing aircraft. The authors conclude that electric propulsion technology has the potential to revolutionize aircraft design. However, new and innovative methods must be researched, to realize the full benefit of the technology. KW - Hybrid-electric aircraft KW - Aircraft design KW - Design rules KW - Green aircraft Y1 - 2019 SN - 978-981-13-3305-7 U6 - https://doi.org/10.1007/978-981-13-3305-7_99 N1 - APISAT 2018 - Asia-Pacific International Symposium on Aerospace Technology. 16-18 October 2018. Chengdu, China. Lecture Notes in Electrical Engineering (LNEE, volume 459) SP - 1261 EP - 1272 PB - Springer CY - Singapore ER - TY - CHAP A1 - Götten, Falk A1 - Finger, Felix A1 - Braun, Carsten A1 - Havermann, Marc A1 - Bil, Cees A1 - Gomez, Francisco T1 - Empirical Correlations for Geometry Build-Up of Fixed Wing Unmanned Air Vehicles T2 - APISAT 2018: The Proceedings of the 2018 Asia-Pacific International Symposium on Aerospace Technology (APISAT 2018) N2 - The results of a statistical investigation of 42 fixed-wing, small to medium sized (20 kg−1000 kg) reconnaissance unmanned air vehicles (UAVs) are presented. Regression analyses are used to identify correlations of the most relevant geometry dimensions with the UAV’s maximum take-off mass. The findings allow an empirical based geometry-build up for a complete unmanned aircraft by referring to its take-off mass only. This provides a bridge between very early design stages (initial sizing) and the later determination of shapes and dimensions. The correlations might be integrated into a UAV sizing environment and allow designers to implement more sophisticated drag and weight estimation methods in this process. Additional information on correlation factors for a rough drag estimation methodology indicate how this technique can significantly enhance the accuracy of early design iterations. KW - Unmanned Air Vehicle KW - Geometry KW - Correlations KW - Statistics KW - Drag Y1 - 2019 SN - 978-981-13-3305-7 U6 - https://doi.org/10.1007/978-981-13-3305-7_109 N1 - APISAT 2018 - Asia-Pacific International Symposium on Aerospace Technology. 16-18 October 2018. Chengdu, China. Lecture Notes in Electrical Engineering (LNEE, volume 459) SP - 1365 EP - 1381 PB - Springer CY - Singapore ER - TY - CHAP A1 - Grundmann, Jan Thimo A1 - Bauer, Waldemar A1 - Borchers, Kai A1 - Dumont, Etienne A1 - Grimm, Christian D. A1 - Ho, Tra-Mi A1 - Jahnke, Rico A1 - Koch, Aaron D. A1 - Lange, Caroline A1 - Maiwald, Volker A1 - Meß, Jan-Gerd A1 - Mikulz, Eugen A1 - Quantius, Dominik A1 - Reershemius, Siebo A1 - Renger, Thomas A1 - Sasaki, Kaname A1 - Seefeldt, Patric A1 - Spietz, Peter A1 - Spröwitz, Tom A1 - Sznajder, Maciej A1 - Toth, Norbert A1 - Ceriotti, Matteo A1 - McInnes, Colin A1 - Peloni, Alessandro A1 - Biele, Jens A1 - Krause, Christian A1 - Dachwald, Bernd A1 - Hercik, David A1 - Lichtenheldt, Roy A1 - Wolff, Friederike A1 - Koncz, Alexander A1 - Pelivan, Ivanka A1 - Schmitz, Nicole A1 - Boden, Ralf Christian A1 - Riemann, Johannes A1 - Seboldt, Wolfgang A1 - Wejmo, Elisabet A1 - Ziach, Christian A1 - Mikschl, Tobias A1 - Montenegro, Sergio A1 - Ruffer, Michael A1 - Cordero, Federico A1 - Tardivel, Simon T1 - Solar sails for planetary defense & high-energy missions T2 - IEEE Aerospace Conference Proceedings N2 - 20 years after the successful ground deployment test of a (20 m) 2 solar sail at DLR Cologne, and in the light of the upcoming U.S. NEAscout mission, we provide an overview of the progress made since in our mission and hardware design studies as well as the hardware built in the course of our solar sail technology development. We outline the most likely and most efficient routes to develop solar sails for useful missions in science and applications, based on our developed `now-term' and near-term hardware as well as the many practical and managerial lessons learned from the DLR-ESTEC Gossamer Roadmap. Mission types directly applicable to planetary defense include single and Multiple NEA Rendezvous ((M)NR) for precursor, monitoring and follow-up scenarios as well as sail-propelled head-on retrograde kinetic impactors (RKI) for mitigation. Other mission types such as the Displaced L1 (DL1) space weather advance warning and monitoring or Solar Polar Orbiter (SPO) types demonstrate the capability of near-term solar sails to achieve asteroid rendezvous in any kind of orbit, from Earth-coorbital to extremely inclined and even retrograde orbits. Some of these mission types such as SPO, (M)NR and RKI include separable payloads. For one-way access to the asteroid surface, nanolanders like MASCOT are an ideal match for solar sails in micro-spacecraft format, i.e. in launch configurations compatible with ESPA and ASAP secondary payload platforms. Larger landers similar to the JAXA-DLR study of a Jupiter Trojan asteroid lander for the OKEANOS mission can shuttle from the sail to the asteroids visited and enable multiple NEA sample-return missions. The high impact velocities and re-try capability achieved by the RKI mission type on a final orbit identical to the target asteroid's but retrograde to its motion enables small spacecraft size impactors to carry sufficient kinetic energy for deflection. Y1 - 2019 U6 - https://doi.org/10.1109/AERO.2019.8741900 N1 - AERO 2019; Big Sky; United States; 2 March 2019 through 9 March 2019 SP - 1 EP - 21 ER - TY - CHAP A1 - Grundmann, Jan Thimo A1 - Bauer, Waldemar A1 - Boden, Ralf Christian A1 - Ceriotti, Matteo A1 - Chand, Suditi A1 - Cordero, Federico A1 - Dachwald, Bernd A1 - Dumont, Etienne A1 - Grimm, Christian D. A1 - Heiligers, Jeannette A1 - Herčík, David A1 - Hérique, Alain A1 - Ho, Tra-Mi A1 - Jahnke, Rico A1 - Kofman, Wlodek A1 - Lange, Caroline A1 - Lichtenheldt, Roy A1 - McInnes, Colin A1 - Meß, Jan-Gerd A1 - Mikschl, Tobias A1 - Mikulz, Eugen A1 - Montenegro, Sergio A1 - Moore, Iain A1 - Pelivan, Ivanka A1 - Peloni, Alessandro A1 - Plettemeier, Dirk A1 - Quantius, Dominik A1 - Reershemius, Siebo A1 - Renger, Thomas A1 - Riemann, Johannes A1 - Rogez, Yves A1 - Ruffer, Michael A1 - Sasaki, Kaname A1 - Schmitz, Nicole A1 - Seboldt, Wolfgang A1 - Seefeldt, Patric A1 - Spietz, Peter A1 - Spröwitz, Tom A1 - Sznajder, Maciej A1 - Tóth, Norbert A1 - Vergaaij, Merel A1 - Viavattene, Giulia A1 - Wejmo, Elisabet A1 - Wiedemann, Carsten A1 - Wolff, Friederike A1 - Ziach, Christian T1 - Flights are ten a sail – Re-use and commonality in the design and system engineering of small spacecraft solar sail missions with modular hardware for responsive and adaptive exploration T2 - 70th International Astronautical Congress (IAC) KW - system engineering KW - small solar system body characterisation KW - small spacecraft solar sail KW - small spacecraft asteroid lander KW - responsive space Y1 - 2019 SN - 9781713814856 N1 - 70th International Astronautical Congress (IAC), Washington D.C., United States, 21-25 October 2019 SP - 1 EP - 7 ER - TY - JOUR A1 - Grundmann, Jan Thimo A1 - Bauer, Waldemar A1 - Biele, Jens A1 - Boden, Ralf Christian A1 - Ceriotti, Matteo A1 - Cordero, Federico A1 - Dachwald, Bernd A1 - Dumont, Etienne A1 - Grimm, Christian D. A1 - Hercik, David T1 - Capabilities of Gossamer-1 derived small spacecraft solar sails carrying Mascot-derived nanolanders for in-situ surveying of NEAs JF - Acta Astronautica Y1 - 2019 U6 - https://doi.org/10.1016/j.actaastro.2018.03.019 SN - 0094-5765 VL - 156 IS - 3 SP - 330 EP - 362 PB - Elsevier CY - Amsterdam ER - TY - CHAP A1 - Striegan, Constantin J. D. A1 - Struth, Benjamin A1 - Dickhoff, Jens A1 - Kusterer, Karsten A1 - Funke, Harald A1 - Bohn, Dieter E. T1 - Numerical Simulations of the Micromix DLN Hydrogen Combustion Technology with LES and Comparison to Results of RANS and Experimental Data T2 - Proceedings of International Gas Turbine Congress 2019 Tokyo, November 17-22, 2019, Tokyo, Japan. Y1 - 2019 SN - 978-4-89111-010-9 N1 - IGCT-2019-147 SP - 1 EP - 9 ER - TY - GEN A1 - Biewendt, Marcel A1 - Blaschke, Florian A1 - Böhnert, Arno ED - Koponicsne Györke, Diana T1 - The rebound effect: a critical and systematic review on the current state of affairs T2 - Abstracts of the International Conference on Sustainable Economy and Agriculture Y1 - 2019 SN - 978-615-5599-72-9 N1 - International Conference on Sustainable Economy and Agriculture. Kaposvár University – Kaposvár – Hungary – 14th November 2019 SP - 101 EP - 101 PB - Universität Kaposvár CY - Kaposvár ER -