TY - CHAP A1 - Gao, H. A1 - Babilon, Katharina A1 - Pfaff, Raphael A1 - Gan, F. A1 - Reich, A. T1 - Model of wheel-rail contact for sanding and adhesion enhancement T2 - Proceedings of the 11th International Conference on Contact Mechanics and Wear of Rail/wheel Systems, CM 2018 Y1 - 2018 SN - 978-946186963-0 SP - 314 EP - 321 ER - TY - CHAP A1 - Pfaff, Raphael A1 - Melcher, Karin A1 - Franzen, Julian T1 - Rare event simulation to optimise maintenance intervals of safety critical redundant subsystems T2 - Proceedings of the European Conference of the PHM Society Y1 - 2018 VL - 4 IS - 1 SP - 1 EP - 6 ER - TY - CHAP A1 - Wiesen, Patrick A1 - Engemann, Heiko A1 - Limpert, Nicolas A1 - Kallweit, Stephan T1 - Learning by Doing - Mobile Robotics in the FH Aachen ROS Summer School T2 - European Robotics Forum 2018, TRROS18 Workshop Y1 - 2018 SP - 47 EP - 58 ER - TY - CHAP A1 - Ulmer, Jessica A1 - Braun, Sebastian A1 - Cheng, Chi-Tsun A1 - Dowey, Steve A1 - Wollert, Jörg T1 - Adapting augmented reality systems to the users’ needs using gamification and error solving methods T2 - Procedia CIRP - 54th CIRP CMS 2021 - Towards Digitalized Manufacturing 4.0 N2 - Animations of virtual items in AR support systems are typically predefined and lack interactions with dynamic physical environments. AR applications rarely consider users’ preferences and do not provide customized spontaneous support under unknown situations. This research focuses on developing adaptive, error-tolerant AR systems based on directed acyclic graphs and error resolving strategies. Using this approach, users will have more freedom of choice during AR supported work, which leads to more efficient workflows. Error correction methods based on CAD models and predefined process data create individual support possibilities. The framework is implemented in the Industry 4.0 model factory at FH Aachen. KW - Augmented Reality KW - Adaptive Systems KW - Gamification KW - Error Recovery Y1 - 2021 U6 - https://doi.org/10.1016/j.procir.2021.11.024 SN - 2212-8271 N1 - CIRP CMS 2021 - 54th CIRP Conference on Manufacturing Systems, September 22-24, 2021, online VL - 104 SP - 140 EP - 145 PB - Elsevier CY - Amsterdam ER - TY - CHAP A1 - Evans, Benjamin A1 - Braun, Sebastian A1 - Ulmer, Jessica A1 - Wollert, Jörg T1 - AAS implementations - current problems and solutions T2 - 20th International Conference on Mechatronics - Mechatronika (ME) N2 - The fourth industrial revolution presents a multitude of challenges for industries, one of which being the increased flexibility required of manufacturing lines as a result of increased consumer demand for individualised products. One solution to tackle this challenge is the digital twin, more specifically the standardised model of a digital twin also known as the asset administration shell. The standardisation of an industry wide communications tool is a critical step in enabling inter-company operations. This paper discusses the current state of asset administration shells, the frameworks used to host them and their problems that need to be addressed. To tackle these issues, we propose an event-based server capable of drastically reducing response times between assets and asset administration shells and a multi-agent system used for the orchestration and deployment of the shells in the field. KW - Industry 4.0 KW - Multi-agent Systems KW - Digital Twin KW - Asset Administration Shell Y1 - 2022 SN - 978-1-6654-1040-3 U6 - https://doi.org/10.1109/ME54704.2022.9982933 N1 - 20th International Conference on Mechatronics - Mechatronika (ME), 07-09 December 2022, Pilsen, Czech Republic PB - IEEE CY - New York, NY ER - TY - CHAP A1 - Engemann, Heiko A1 - Wiesen, Patrick A1 - Kallweit, Stephan A1 - Deshpande, Harshavardhan A1 - Schleupen, Josef T1 - Autonomous mobile manipulation using ROS T2 - Advances in Service and Industrial Robotics Y1 - 2018 SN - 978-3-319-61276-8 U6 - https://doi.org/10.1007/978-3-319-61276-8_43 N1 - International Conference on Robotics in Alpe-Adria Danube Region RAAD 2017; Mechanisms and Machince Science book series, Vol 49. SP - 389 EP - 401 PB - Springer CY - Cham ER - TY - CHAP A1 - Pfaff, Raphael A1 - Schmidt, B. D. A1 - Enning, Manfred T1 - Towards inclusion of the freight rail system in the industrial internet of things - Wagon 4.0 T2 - Stephenson Conference, London, March 2017 Y1 - 2017 N1 - IMechE Stephenson Conference <2017, London, United Kingdom> SP - 1 EP - 10 ER - TY - CHAP A1 - Pfaff, Raphael A1 - Moshiri, Amir A1 - Reich, Alexander A1 - Gäbel, Markus T1 - Modelling of the effect of sanding on the wheel-rail adhesion area T2 - First International Conference on Rail Transportation Y1 - 2017 N1 - 2017 ICRT; International Conference on Rail Transportation <1, 2017, Chengdu, China> SP - 1 EP - 7 ER - TY - CHAP A1 - Shahidi, Parham A1 - Pfaff, Raphael A1 - Enning, Manfred T1 - The connected wagon - a concept for the integration of vehicle side sensors and actors with cyber physical representation for condition based maintenance T2 - First International Conference on Rail Transportation Y1 - 2017 N1 - 2017 ICRT; International Conference on Rail Transportation <1, 2017, Chengdu, China> SP - 1 EP - 8 ER - TY - CHAP A1 - Pfaff, Raphael A1 - Shahidi, Parham A1 - Enning, Manfred T1 - Connected freight rail rolling stock: a modular approach integrating sensors, actors and cyber physical systems for operational advantages and condition based maintenance T2 - Asia-Pacific Conference of the Prognostics and Health Management Society Y1 - 2017 N1 - Asia-Pacific Conference of the Prognostics and Health Management Society, Jeju, Korea 2017 SP - 1 EP - 7 ER - TY - CHAP A1 - Pfaff, Raphael T1 - Analysis of Big Data Streams to obtain Braking Reliability Information for Train Protection systems T2 - Asia-Pacific Conference of the Prognostics and Health Management Society Y1 - 2017 N1 - Asia-Pacific Conference of the Prognostics and Health Management Society, Jeju, Korea 2017 SP - 1 EP - 7 ER - TY - CHAP A1 - Fateri, Miranda A1 - Gebhardt, Andreas A1 - Renftle, Georg T1 - Additive manufacturing of drainage segments for cooling system of crucible melting furnaces T2 - Advanced Processing and Manufacturing Technologies for Structural and Multifunctional Materials II, International Symposium on Advanced Processing and Manufacturing Technologies for Structural and Multifunctional Materials, ICACC 15, 39th International Conference on Advanced Ceramics and Composites, Daytona Beach, FL, US, Jan 25-30, 2015 Y1 - 2015 U6 - https://doi.org/10.1002/9781119211662.ch14 SN - 0196-6219 SP - 123 EP - 131 PB - Wiley CY - Hoboken ER - TY - CHAP A1 - Ulmer, Jessica A1 - Braun, Sebastian A1 - Lai, Chow Yin A1 - Cheng, Chi-Tsun A1 - Wollert, Jörg T1 - Generic integration of VR and AR in product lifecycles based on CAD models T2 - Proceedings of The 23rd World Multi-Conference on Systemics, Cybernetics and Informatics: WMSCI 2019 Y1 - 2019 ER - TY - CHAP A1 - Engemann, Heiko A1 - Badri, Sriram A1 - Wenning, Marius A1 - Kallweit, Stephan T1 - Implementation of an Autonomous Tool Trolley in a Production Line T2 - Advances in Service and Industrial Robotics. RAAD 2019. Advances in Intelligent Systems and Computing, vol 980 Y1 - 2019 SN - 978-3-030-19648-6 U6 - https://doi.org/10.1007/978-3-030-19648-6_14 SP - 117 EP - 125 PB - Springer CY - Cham ER - TY - CHAP A1 - Braun, Sebastian A1 - Cheng, Chi-Tsun A1 - Dowey, Steve A1 - Wollert, Jörg T1 - Survey on Security Concepts to Adapt Flexible Manufacturing and Operations Management based upon Multi-Agent Systems T2 - 2020 IEEE 29th International Symposium on Industrial Electronics (ISIE), Proceedings N2 - The increasing digitalization brings new opportunities but also puts new challenges to modern industrial systems. Software agents are one of the key technologies towards self-optimizing factories and are currently used to address the needs of cyber-physical production systems (CPPS). However their interplay in industrial settings needs to be understood better.This paper focusses on securing a cloud infrastructure for multi-agent systems for industrial sites. An industrial site contains multiple production processes that need to communicate with each other and each physical resource is abstracted with a software agent. This volatile architecture needs to be managed and protected from manipulation. The proposed infrastructure presents a security concept for TCP/IP communication between agents, machines, and external networks. It is based on open-source software and tested on a three-node edge cloud controlling a model-plant. Y1 - 2020 U6 - https://doi.org/10.1109/ISIE45063.2020.9152210 N1 - 2020 IEEE 29th International Symposium on Industrial Electronics (ISIE), 17 - 19 June, 2020, Delft, Netherlands PB - IEEE CY - New York, NY ER - TY - CHAP A1 - Kessler, Julia A1 - Balc, Nicolae A1 - Gebhardt, Andreas A1 - Abbas, Karim T1 - Basic research on lattice structures focused on the reliance of the cross sectional area and additional coatings T2 - The 4th International Conference on Computing and Solutions in Manufacturing Engineering 2016 – CoSME’16 Y1 - 2017 U6 - https://doi.org/10.1051/matecconf/20179403008 N1 - MATEC Web Conf. Vol 94, 2017, 03008 MATEC Web of Conferences 94, 03008 (2017) ET - Vol. 94 ER - TY - CHAP A1 - Chavez Bermudez, Victor Francisco A1 - Wollert, Jörg T1 - 10BASE-T1L industry 4.0 smart switch for field devices based on IO-Link T2 - 2022 IEEE 18th International Conference on Factory Communication Systems (WFCS) N2 - The recent amendment to the Ethernet physical layer known as the IEEE 802.3cg specification, allows to connect devices up to a distance of one kilometer and delivers a maximum of 60 watts of power over a twisted pair of wires. This new standard, also known as 10BASE-TIL, promises to overcome the limits of current physical layers used for field devices and bring them a step closer to Ethernet-based applications. The main advantage of 10BASE- TIL is that it can deliver power and data over the same line over a long distance, where traditional solutions (e.g., CAN, IO-Link, HART) fall short and cannot match its 10 Mbps bandwidth. Due to its recentness, IOBASE- TIL is still not integrated into field devices and it has been less than two years since silicon manufacturers released the first Ethernet-PHY chips. In this paper, we present a design proposal on how field devices could be integrated into a IOBASE-TIL smart switch that allows plug-and-play connectivity for sensors and actuators and is compliant with the Industry 4.0 vision. Instead of presenting a new field-level protocol for this work, we have decided to adopt the IO-Link specification which already includes a plug-and-play approach with features such as diagnosis and device configuration. The main objective of this work is to explore how field devices could be integrated into 10BASE-TIL Ethernet, its adaption with a well-known protocol, and its integration with Industry 4.0 technologies. KW - 10BASE-T1L KW - Ethernet KW - Field device KW - Sensors KW - IO-Link Y1 - 2022 SN - 978-1-6654-1086-1 SN - 978-1-6654-1087-8 U6 - https://doi.org/10.1109/WFCS53837.2022.9779176 N1 - 2022 IEEE 18th International Conference on Factory Communication Systems (WFCS), 27-29 April 2022, Pavia, Italy PB - IEEE CY - New York, NY ER - TY - CHAP A1 - Ulmer, Jessica A1 - Braun, Sebastian A1 - Cheng, Chi-Tsun A1 - Dowey, Steve A1 - Wollert, Jörg T1 - Usage of digital twins for gamification applications in manufacturing T2 - Procedia CIRP Leading manufacturing systems transformation – Proceedings of the 55th CIRP Conference on Manufacturing Systems 2022 N2 - Gamification applications are on the rise in the manufacturing sector to customize working scenarios, offer user-specific feedback, and provide personalized learning offerings. Commonly, different sensors are integrated into work environments to track workers’ actions. Game elements are selected according to the work task and users’ preferences. However, implementing gamified workplaces remains challenging as different data sources must be established, evaluated, and connected. Developers often require information from several areas of the companies to offer meaningful gamification strategies for their employees. Moreover, work environments and the associated support systems are usually not flexible enough to adapt to personal needs. Digital twins are one primary possibility to create a uniform data approach that can provide semantic information to gamification applications. Frequently, several digital twins have to interact with each other to provide information about the workplace, the manufacturing process, and the knowledge of the employees. This research aims to create an overview of existing digital twin approaches for digital support systems and presents a concept to use digital twins for gamified support and training systems. The concept is based upon the Reference Architecture Industry 4.0 (RAMI 4.0) and includes information about the whole life cycle of the assets. It is applied to an existing gamified training system and evaluated in the Industry 4.0 model factory by an example of a handle mounting. KW - Gamification KW - Digital Twin KW - Support System Y1 - 2022 U6 - https://doi.org/10.1016/j.procir.2022.05.044 SN - 2212-8271 N1 - 55th CIRP Conference on Manufacturing Systems, Jun 29, 2022 - Jul 01, 2022, Lugano, Switzerland VL - 107 SP - 675 EP - 680 PB - Elsevier CY - Amsterdam ER - TY - CHAP A1 - Dannen, Tammo A1 - Schindele, Benedikt A1 - Prümmer, Marcel A1 - Arntz, Kristian A1 - Bergs, Thomas T1 - Methodology for the self-optimizing determination of additive manufacturing process eligibility and optimization potentials in toolmaking T2 - Procedia CIRP Leading manufacturing systems transformation – Proceedings of the 55th CIRP Conference on Manufacturing Systems 2022 N2 - Additive Manufacturing (AM) of metallic workpieces faces a continuously rising technological relevance and market size. Producing complex or highly strained unique workpieces is a significant field of application, making AM highly relevant for tool components. Its successful economic application requires systematic workpiece based decisions and optimizations. Considering geometric and technological requirements as well as the necessary post-processing makes deciding effortful and requires in-depth knowledge. As design is usually adjusted to established manufacturing, associated technological and strategic potentials are often neglected. To embed AM in a future proof industrial environment, software-based self-learning tools are necessary. Integrated into production planning, they enable companies to unlock the potentials of AM efficiently. This paper presents an appropriate methodology for the analysis of process-specific AM-eligibility and optimization potential, added up by concrete optimization proposals. For an integrated workpiece characterization, proven methods are enlarged by tooling-specific figures. The first stage of the approach specifies the model’s initialization. A learning set of tooling components is described using the developed key figure system. Based on this, a set of applicable rules for workpiece-specific result determination is generated through clustering and expert evaluation. Within the following application stage, strategic orientation is quantified and workpieces of interest are described using the developed key figures. Subsequently, the retrieved information is used for automatically generating specific recommendations relying on the generated ruleset of stage one. Finally, actual experiences regarding the recommendations are gathered within stage three. Statistic learning transfers those to the generated ruleset leading to a continuously deepening knowledge base. This process enables a steady improvement in output quality. KW - Additive manufacturing KW - Laser-Powder Bed Fusion KW - L-PBF KW - Binder Jetting KW - Directed Energy Deposition Y1 - 2022 U6 - https://doi.org/10.1016/j.procir.2022.05.188 SN - 2212-8271 N1 - 55th CIRP Conference on Manufacturing Systems, Jun 29, 2022 - Jul 01, 2022, Lugano, Switzerland VL - 107 SP - 1539 EP - 1544 PB - Elsevier CY - Amsterdam ER - TY - CHAP A1 - Chavez Bermudez, Victor Francisco A1 - Cruz Castanon, Victor Fernando A1 - Ruchay, Marco A1 - Wollert, Jörg ED - Leipzig, Hochschule für Technik, Wirtschaft und Kultur T1 - Rapid prototyping framework for automation applications based on IO-Link T2 - Tagungsband AALE 2022: Wissenstransfer im Spannungsfeld von Autonomisierung und Fachkräftemangel N2 - The development of protype applications with sensors and actuators in the automation industry requires tools that are independent of manufacturer, and are flexible enough to be modified or extended for any specific requirements. Currently, developing prototypes with industrial sensors and actuators is not straightforward. First of all, the exchange of information depends on the industrial protocol that these devices have. Second, a specific configuration and installation is done based on the hardware that is used, such as automation controllers or industrial gateways. This means that the development for a specific industrial protocol, highly depends on the hardware and the software that vendors provide. In this work we propose a rapid-prototyping framework based on Arduino to solve this problem. For this project we have focused to work with the IO-Link protocol. The framework consists of an Arduino shield that acts as the physical layer, and a software that implements the IO-Link Master protocol. The main advantage of such framework is that an application with industrial devices can be rapid-prototyped with ease as its vendor independent, open-source and can be ported easily to other Arduino compatible boards. In comparison, a typical approach requires proprietary hardware, is not easy to port to another system and is closed-source. KW - Rapid-prototyping KW - Arduino KW - IO-Link KW - Industrial Communication Y1 - 2022 SN - 978-3-910103-00-9 U6 - https://doi.org/10.33968/2022.28 N1 - 18. AALE-Konferenz. Pforzheim, 09.03.-11.03.2022 CY - Leipzig ER -