TY - CHAP A1 - Kahmann, Stephanie A1 - Hackl, Michael A1 - Wegmann, Kilian A1 - Müller, Lars-Peter A1 - Staat, Manfred ED - Erni, Daniel T1 - Impact of a proximal radial shortening osteotomy on the distribution of forces and the stability of the elbow T2 - 1st YRA MedTech Symposium 2016 : April 8th / 2016 / University of Duisburg-Essen N2 - The human arm consists of the humerus (upper arm), the medial ulna and the lateral radius (forearm). The joint between the humerus and the ulna is called humeroulnar joint and the joint between the humerus and the radius is called humeroradial joint. Lateral and medial collateral ligaments stabilize the elbow. Statistically, 2.5 out of 10,000 people suffer from radial head fractures [1]. In these fractures the cartilage is often affected. Caused by the injured cartilage, degenerative diseases like posttraumatic arthrosis may occur. The resulting pain and reduced range of motion have an impact on the patient’s quality of life. Until now, there has not been a treatment which allows typical loads in daily life activities and offers good long-term results. A new surgical approach was developed with the motivation to reduce the progress of the posttraumatic arthrosis. Here, the radius is shortened by 3 mm in the proximal part [2]. By this means, the load of the radius is intended to be reduced due to a load shift to the ulna. Since the radius is the most important stabilizer of the elbow it has to be confirmed that the stability is not affected. In the first test (Fig. 1 left), pressure distributions within the humeroulnar and humeroradial joints a native and a shortened radius were measured using resistive pressure sensors (I5076 and I5027, Tekscan, USA). The humerus was loaded axially in a tension testing machine (Z010, Zwick Roell, Germany) in 50 N steps up to 400 N. From the humerus the load is transmitted through both the radius and the ulna into the hand which is fixed on the ground. In the second test (Fig. 1 right), the joint stability was investigated using a digital image correlation system to measure the displacement of the ulna. Here, the humerus is fixed with a desired flexion angle and the unconstrained forearm lies on the ground. A rope connects the load actuator with a hook fixed in the ulna. A guide roller is used so that the rope pulls the ulna horizontally when a tensile load is applied. This creates a moment about the elbow joint with a maximum value of 7.5 Nm. Measurements were performed with varying flexion angles (0°, 30°, 60°, 90°, 120°). For both tests and each measurement, seven specimens were used. Student ́s t-test was employed to determine whether the mean values of the measurements in native specimen and operated specimens differ significantly. Y1 - 2016 U6 - https://doi.org/10.17185/duepublico/40821 SP - 7 EP - 8 PB - Universität Duisburg-Essen CY - Duisburg ER - TY - CHAP A1 - Kahmann, Stephanie Lucina A1 - Uschok, Stephan A1 - Wegmann, Kilian A1 - Müller, Lars-P. A1 - Staat, Manfred T1 - Biomechanical multibody model with refined kinematics of the elbow T2 - 6th European Conference on Computational Mechanics (ECCM 6), 7th European Conference on Computational Fluid Dynamics (ECFD 7), 11-15 June 2018, Glasgow, UK N2 - The overall objective of this study is to develop a new external fixator, which closely maps the native kinematics of the elbow to decrease the joint force resulting in reduced rehabilitation time and pain. An experimental setup was designed to determine the native kinematics of the elbow during flexion of cadaveric arms. As a preliminary study, data from literature was used to modify a published biomechanical model for the calculation of the joint and muscle forces. They were compared to the original model and the effect of the kinematic refinement was evaluated. Furthermore, the obtained muscle forces were determined in order to apply them in the experimental setup. The joint forces in the modified model differed slightly from the forces in the original model. The muscle force curves changed particularly for small flexion angles but their magnitude for larger angles was consistent. Y1 - 2018 ER - TY - CHAP A1 - Kahra, Marvin A1 - Breuß, Michael A1 - Kleefeld, Andreas A1 - Welk, Martin ED - Brunetti, Sara ED - Frosini, Andrea ED - Rinaldi, Simone T1 - An Approach to Colour Morphological Supremum Formation Using the LogSumExp Approximation T2 - Discrete Geometry and Mathematical Morphology N2 - Mathematical morphology is a part of image processing that has proven to be fruitful for numerous applications. Two main operations in mathematical morphology are dilation and erosion. These are based on the construction of a supremum or infimum with respect to an order over the tonal range in a certain section of the image. The tonal ordering can easily be realised in grey-scale morphology, and some morphological methods have been proposed for colour morphology. However, all of these have certain limitations. In this paper we present a novel approach to colour morphology extending upon previous work in the field based on the Loewner order. We propose to consider an approximation of the supremum by means of a log-sum exponentiation introduced by Maslov. We apply this to the embedding of an RGB image in a field of symmetric 2x2 matrices. In this way we obtain nearly isotropic matrices representing colours and the structural advantage of transitivity. In numerical experiments we highlight some remarkable properties of the proposed approach. Y1 - 2024 SN - 978-3-031-57793-2 U6 - https://doi.org/10.1007/978-3-031-57793-2_25 N1 - Third International Joint Conference, DGMM 2024, Florence, Italy, April 15–18, 2024 SP - 325 EP - 337 PB - Springer CY - Cham ER - TY - JOUR A1 - Kaminsky, Radoslav A1 - Dumont, K. A1 - Weber, Hans-Joachim A1 - Schroll, M. A1 - Verdonck, P. T1 - PIV validation of blood-heart valve leaflet interaction modelling JF - The International journal of artificial organs. 30 (2007), H. 7 Y1 - 2007 SP - 640 EP - 648 PB - - ER - TY - JOUR A1 - Kaminsky, Radoslav A1 - Kallweit, Stephan A1 - Weber, Hans-Joachim A1 - Claessens, Tom A1 - Jozwik, Krzystof A1 - Verdonck, Pascal T1 - Flow visualization through two types of aortic prosthetic heart valves using stereoscopic high-speed particle image velocimetry JF - Artificial organs. 31 (2007), H. 12 Y1 - 2007 SN - 1525-1594 SP - 869 EP - 879 ER - TY - JOUR A1 - Kaminsky, Radoslav A1 - Kallweit, Stephan A1 - Weber, Hans-Joachim A1 - Simons, Antoine A1 - Kramm, K. A1 - Jazwik, K. A1 - Moll, J. A1 - Verdonck, P. T1 - 3D high speed piv assessment of a new aortic heart valve prototype JF - Journal of biomechanics. 39 (2006), H. Supplement 1 Y1 - 2006 SN - 0021-9290 N1 - World Congress of Biomechanics <5, 2006, München>: Abstracts of the 5th World Congress of Biomechanics SP - S304 EP - S305 PB - - ER - TY - BOOK A1 - Kaminsky, Radoslav A1 - Kallweit, Stephan A1 - Weber, Hans-Joachim A1 - Simons, Antoine A1 - Verdonck, Pascal T1 - Stereo high speed PIV measurements behind two different artificial heart valves Y1 - 2006 N1 - International Symposium on Applications of Laser Techniques to Fluid Mechanics <13, 2006, Lisboa> ER - TY - JOUR A1 - Kaminsky, Randolph A1 - Simons, Antoine A1 - Gatzweiler, Karl-Heinz A1 - Weber, Hans-Joachim T1 - Flow visualization by means of PIV of an artificial aortic heart valve fixed into a mock aorta JF - Acta Mechanica Slovaka 2-A. 9 (2005) Y1 - 2005 SP - 343 EP - 348 ER - TY - JOUR A1 - Kaminsky, Randolph A1 - Weber, Hans-Joachim A1 - Simons, Antoine A1 - Kallweit, Stephan A1 - Kramm, K. A1 - Verdonck, Pascale T1 - Comparison of the flow downstream two prototypes of a new monoleaflet artificial aortic heart valve by means of PIV visualization JF - Computer methods in biomechanics and biomedical engineering. 8 (2005), H. 4, Suppl. 1 Y1 - 2005 SN - 1476-8259 SP - 159 EP - 160 ER - TY - JOUR A1 - Kappmeyer, K. A1 - Kotliar, Konstantin A1 - Lanzl, I. M. T1 - Spielen von Blasinstrumenten und Augeninnendruck JF - Zeitschrift für praktische Augenheilkunde & augenärztliche Fortbildung : ZPA Y1 - 2009 SN - 1436-0322 VL - Bd. 30 SP - 169 EP - 171 ER - TY - JOUR A1 - Karamanidis, Kiros A1 - Albracht, Kirsten A1 - Braunstein, Bjoern A1 - Catala, Maria Moreno A1 - Goldmann, Jan-Peter A1 - Brüggemann, Gert-Peter T1 - Lower leg musculoskeletal geometry and sprint performance JF - Gait and Posture N2 - The purpose of this study was to investigate whether sprint performance is related to lower leg musculoskeletal geometry within a homogeneous group of highly trained 100-m sprinters. Using a cluster analysis, eighteen male sprinters were divided into two groups based on their personal best (fast: N = 11, 10.30 ± 0.07 s; slow: N = 7, 10.70 ± 0.08 s). Calf muscular fascicle arrangement and Achilles tendon moment arms (calculated by the gradient of tendon excursion versus ankle joint angle) were analyzed for each athlete using ultrasonography. Achilles tendon moment arm, foot and ankle skeletal geometry, fascicle arrangement as well as the ratio of fascicle length to Achilles tendon moment arm showed no significant (p > 0.05) correlation with sprint performance, nor were there any differences in the analyzed musculoskeletal parameters between the fast and slow sprinter group. Our findings provide evidence that differences in sprint ability in world-class athletes are not a result of differences in the geometrical design of the lower leg even when considering both skeletal and muscular components. Y1 - 2011 U6 - https://doi.org/10.1016/j.gaitpost.2011.03.009 SN - 0966-6362 VL - 34 IS - 1 SP - 138 EP - 141 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Karnatak, Rajat A1 - Kantz, Holger A1 - Bialonski, Stephan T1 - Early warning signal for interior crises in excitable systems JF - Physical Review E Y1 - 2017 U6 - https://doi.org/10.1103/PhysRevE.96.042211 SN - 2470-0053 VL - 96 IS - 4 SP - 042211 ER - TY - JOUR A1 - Karschuck, T. L. A1 - Filipov, Y. A1 - Bollella, P. A1 - Schöning, Michael Josef A1 - Katz, E. T1 - Not-XOR (NXOR) logic gate based on an enzyme-catalyzed reaction JF - International Journal of Unconventional Computing N2 - Enzyme-catalyzed reactions have been designed to mimic various Boolean logic gates in the general framework of unconventional biomolecular computing. While some of the logic gates, particularly OR, AND, are easy to realize with biocatalytic reactions and have been reported in numerous publications, some other, like NXOR, are very challenging and have not been realized yet with enzyme reactions. The paper reports on a novel approach to mimicking the NXOR logic gate using the bell-shaped enzyme activity dependent on pH values. Shifting pH from the optimum value to the acidic or basic values by using acid or base inputs (meaning 1,0 and 0,1 inputs) inhibits the enzyme reaction, while keeping the optimum pH (assuming 0,0 and 1,1 input combinations) preserves a high enzyme activity. The challenging part of the present approach is the selection of an enzyme with a well-demonstrated bell-shape activity dependence on the pH value. While many enzymes can satisfy this condition, we selected pyrroloquinoline quinone (PQQ)-dependent glucose dehydrogenase as this enzyme has the optimum pH center-located on the pH scale allowing the enzyme activity change by the acidic and basic pH shift from the optimum value corresponding to the highest activity. The present NXOR gate is added to the biomolecular “toolbox” as a new example of Boolean logic gates based on enzyme reactions. Y1 - 2019 SN - 1548-7199 VL - 14 IS - 3-4 SP - 235 EP - 242 PB - Old City Publishing CY - Philadelphia ER - TY - JOUR A1 - Karschuck, Tobias A1 - Poghossian, Arshak A1 - Ser, Joey A1 - Tsokolakyan, Astghik A1 - Achtsnicht, Stefan A1 - Wagner, Patrick A1 - Schöning, Michael Josef T1 - Capacitive model of enzyme-modified field-effect biosensors: Impact of enzyme coverage JF - Sensors and Actuators B: Chemical N2 - Electrolyte-insulator-semiconductor capacitors (EISCAP) belong to field-effect sensors having an attractive transducer architecture for constructing various biochemical sensors. In this study, a capacitive model of enzyme-modified EISCAPs has been developed and the impact of the surface coverage of immobilized enzymes on its capacitance-voltage and constant-capacitance characteristics was studied theoretically and experimentally. The used multicell arrangement enables a multiplexed electrochemical characterization of up to sixteen EISCAPs. Different enzyme coverages have been achieved by means of parallel electrical connection of bare and enzyme-covered single EISCAPs in diverse combinations. As predicted by the model, with increasing the enzyme coverage, both the shift of capacitance-voltage curves and the amplitude of the constant-capacitance signal increase, resulting in an enhancement of analyte sensitivity of the EISCAP biosensor. In addition, the capability of the multicell arrangement with multi-enzyme covered EISCAPs for sequentially detecting multianalytes (penicillin and urea) utilizing the enzymes penicillinase and urease has been experimentally demonstrated and discussed. KW - Field-effect biosensor KW - Capacitive model KW - Enzyme coverage KW - Multianalyte detection KW - Penicillin Y1 - 2024 U6 - https://doi.org/10.1016/j.snb.2024.135530 SN - 0925-4005 (Print) SN - 1873-3077 (Online) N1 - Corresponding Author: Michael J. Schöning VL - 408 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Karschuck, Tobias A1 - Schmidt, Stefan A1 - Achtsnicht, Stefan A1 - Poghossian, Arshak A1 - Wagner, Patrick A1 - Schöning, Michael Josef T1 - Multiplexing system for automated characterization of a capacitive field-effect sensor array JF - Physica Status Solidi A N2 - In comparison to single-analyte devices, multiplexed systems for a multianalyte detection offer a reduced assay time and sample volume, low cost, and high throughput. Herein, a multiplexing platform for an automated quasi-simultaneous characterization of multiple (up to 16) capacitive field-effect sensors by the capacitive–voltage (C–V) and the constant-capacitance (ConCap) mode is presented. The sensors are mounted in a newly designed multicell arrangement with one common reference electrode and are electrically connected to the impedance analyzer via the base station. A Python script for the automated characterization of the sensors executes the user-defined measurement protocol. The developed multiplexing system is tested for pH measurements and the label-free detection of ligand-stabilized, charged gold nanoparticles. KW - Capacitive field-effect sensor KW - Gold nanoparticles KW - Label-free detection KW - Multicell KW - Multiplexing Y1 - 2023 U6 - https://doi.org/10.1002/pssa.202300265 SN - 1862-6300 (Print) SN - 1862-6319 (Online) N1 - Corresponding author: Michael Josef Schöning VL - 220 IS - 22 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Kassab, T. A1 - Han, Y. A1 - Poghossian, Arshak A1 - Ingebrandt, S. A1 - Offenhäusser, A. A1 - Schöning, Michael Josef T1 - Detection of layerby-layer adsorbed polyelectrolytes by means of field-effect based capacitive EIS structures JF - Biomedizinische Technik. 49 (2004), H. 2 Y1 - 2004 SN - 0932-4666 SP - 1034 EP - 1035 ER - TY - CHAP A1 - Katz, Eugenii A1 - Willner, Itamar T1 - Magneto-controlled quantized electron transfer to surface-confined redox units and metal nanoparticles N2 - Hydrophobic magnetic nanoparticles (NPs) consisting of undecanoate-capped magnetite (Fe3O4, average diameter ca. 5 nm) are used to control quantized electron transfer to surface-confined redox units and metal NPs. A two-phase system consisting of an aqueous electrolyte solution and a toluene phase that includes the suspended undecanoatecapped magnetic NPs is used to control the interfacial properties of the electrode surface. The attracted magnetic NPs form a hydrophobic layer on the electrode surface resulting in the change of the mechanisms of the surface-confined electrochemical processes. A quinone-monolayer modified Au electrode demonstrates an aqueous-type of the electrochemical process (2e-+2H+ redox mechanism) for the quinone units in the absence of the hydrophobic magnetic NPs, while the attraction of the magnetic NPs to the surface results in the stepwise single-electron transfer mechanism characteristic of a dry nonaqueous medium. Also, the attraction of the hydrophobic magnetic NPs to the Au electrode surface modified with Au NPs (ca. 1.4 nm) yields a microenvironment with a low dielectric constant that results in the single-electron quantum charging of the Au NPs. KW - Biosensor KW - Nanoparticles KW - magnetic particles KW - quantum charging KW - modified electrode Y1 - 2006 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:hbz:a96-opus-1528 ER - TY - JOUR A1 - Katz, Evgeny A1 - Poghossian, Arshak A1 - Schöning, Michael Josef T1 - Enzyme-based logic gates and circuits - analytical applications and interfacing with electronics JF - Analytical and Bioanalytical Chemistry N2 - The paper is an overview of enzyme-based logic gates and their short circuits, with specific examples of Boolean AND and OR gates, and concatenated logic gates composed of multi-step enzyme-biocatalyzed reactions. Noise formation in the biocatalytic reactions and its decrease by adding a “filter” system, converting convex to sigmoid response function, are discussed. Despite the fact that the enzyme-based logic gates are primarily considered as components of future biomolecular computing systems, their biosensing applications are promising for immediate practical use. Analytical use of the enzyme logic systems in biomedical and forensic applications is discussed and exemplified with the logic analysis of biomarkers of various injuries, e.g., liver injury, and with analysis of biomarkers characteristic of different ethnicity found in blood samples on a crime scene. Interfacing of enzyme logic systems with modified electrodes and semiconductor devices is discussed, giving particular attention to the interfaces functionalized with signal-responsive materials. Future perspectives in the design of the biomolecular logic systems and their applications are discussed in the conclusion. Y1 - 2017 U6 - https://doi.org/10.1007/s00216-016-0079-7 SN - 1618-2650 VL - 409 SP - 81 EP - 94 PB - Springer CY - Berlin ER - TY - JOUR A1 - Kaul, D. K. A1 - Koshkaryev, A. A1 - Artmann, Gerhard A1 - Barshtein, G. A1 - Yedgar, S. T1 - Additive effect of red blood cell rigidity and adherence to endothelial cells in inducing vascular resistance JF - American Journal of Physiology : Heart and Circulation Physiology . 295 (2008), H. 4 Y1 - 2008 SN - 1522-1539 VL - 295 IS - 4 SP - H1788 EP - H1793 ER - TY - JOUR A1 - Kaulen, Lars A1 - Schwabedal, Justus T. C. A1 - Schneider, Jules A1 - Ritter, Philipp A1 - Bialonski, Stephan T1 - Advanced sleep spindle identification with neural networks JF - Scientific Reports N2 - Sleep spindles are neurophysiological phenomena that appear to be linked to memory formation and other functions of the central nervous system, and that can be observed in electroencephalographic recordings (EEG) during sleep. Manually identified spindle annotations in EEG recordings suffer from substantial intra- and inter-rater variability, even if raters have been highly trained, which reduces the reliability of spindle measures as a research and diagnostic tool. The Massive Online Data Annotation (MODA) project has recently addressed this problem by forming a consensus from multiple such rating experts, thus providing a corpus of spindle annotations of enhanced quality. Based on this dataset, we present a U-Net-type deep neural network model to automatically detect sleep spindles. Our model’s performance exceeds that of the state-of-the-art detector and of most experts in the MODA dataset. We observed improved detection accuracy in subjects of all ages, including older individuals whose spindles are particularly challenging to detect reliably. Our results underline the potential of automated methods to do repetitive cumbersome tasks with super-human performance. Y1 - 2022 U6 - https://doi.org/10.1038/s41598-022-11210-y SN - 2045-2322 N1 - Corresponding author: Stephan Bialonski VL - 12 IS - Article number: 7686 SP - 1 EP - 10 PB - Springer Nature CY - London ER -