TY - JOUR A1 - Biselli, Manfred A1 - Bäcker, Matthias A1 - Poghossian, Arshak A1 - Schöning, Michael Josef A1 - Schnitzler, Thomas A1 - Zang, Werner A1 - Wagner, P. T1 - Entwicklung eines modularen festkörperbasierten Sensorsystems für die Überwachung von Zellkulturfermenationen JF - Sensoren und Messsysteme 2010 [Elektronische Ressource] : Vorträge der 15. ITG/GMA-Fachtagung vom 18. bis 19. Mai 2010 in Nürnberg / Informationstechnische Gesellschaft im VDE (ITG); VDI/VDE-Gesellschaft Mess- und Automatisierungstechnik (GMA) Y1 - 2010 SN - 978-3-8007-3260-9 N1 - Fachtagung Sensoren und Messsysteme 15, 2010, Nürnberg ; Gesellschaft Mess- und Automatisierungstechnik SP - 688 EP - 691 PB - VDE Verlag CY - Berlin ER - TY - JOUR A1 - Breuer, Lars A1 - Mang, Thomas A1 - Schöning, Michael Josef A1 - Thoelen, Ronald A1 - Wagner, Torsten T1 - Investigation of the spatial resolution of a laser-based stimulation process for light-addressable hydrogels with incorporated graphene oxide by means of IR thermography JF - Sensors and Actuators A: Physical Y1 - 2017 U6 - http://dx.doi.org/10.1016/j.sna.2017.11.031 SN - 0924-4247 VL - 268 SP - 126 EP - 132 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Breuer, Lars A1 - Raue, Markus A1 - Kirschbaum, M. A1 - Mang, Thomas A1 - Schöning, Michael Josef A1 - Thoelen, R. A1 - Wagner, Torsten T1 - Light-controllable polymeric material based on temperature-sensitive hydrogels with incorporated graphene oxide JF - Physica status solidi (a) N2 - Poly(N-isopropylacrylamide) (PNIPAAm) hydrogel films with incorporated graphene oxide (GO) were developed and tested as light-stimulated actuators. GO dispersions were synthesized via Hummers method and characterized toward their optical properties and photothermal energy conversion. The hydrogels were prepared by means of photopolymerization. In addition, the influence of GO within the hydrogel network on the lower critical solution temperature (LCST) was investigated by differential scanning calorimetry (DSC). The optical absorbance and the response to illumination were determined as a function of GO concentration for thin hydrogel films. A proof of principle for the stimulation with light was performed. Y1 - 2015 U6 - http://dx.doi.org/10.1002/pssa.201431944 SN - 1862-6319 VL - 212 IS - 6 SP - 1368 EP - 1374 PB - Wiley CY - Weinheim ER - TY - JOUR A1 - Breuer, Lars A1 - Raue, Markus A1 - Strobel, M. A1 - Mang, Thomas A1 - Schöning, Michael Josef A1 - Thoelen, R. A1 - Wagner, Torsten T1 - Hydrogels with incorporated graphene oxide as light-addressable actuator materials for cell culture environments in lab-on-chip systems JF - Physica status solidi (a) N2 - Abstractauthoren Graphene oxide (GO) nanoparticles were incorporated in temperature-sensitive Poly(N-isopropylacrylamide) (PNIPAAm) hydrogels. The nanoparticles increase the light absorption and convert light energy into heat efficiently. Thus, the hydrogels with GO can be stimulated spatially resolved by illumination as it was demonstrated by IR thermography. The temporal progression of the temperature maximum was detected for different concentrations of GO within the polymer network. Furthermore, the compatibility of PNIPAAm hydrogels with GO and cell cultures was investigated. For this purpose, culture medium was incubated with hydrogels containing GO and the viability and morphology of chinese hamster ovary (CHO) cells was examined after several days of culturing in presence of this medium. Y1 - 2016 U6 - http://dx.doi.org/10.1002/pssa.201533056 SN - 1862-6300 VL - 213 IS - 6 SP - 1520 EP - 1525 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Bäcker, Matthias A1 - Beging, Stefan A1 - Biselli, Manfred A1 - Poghossian, Arshak A1 - Wang, J. A1 - Zang, Werner A1 - Wagner, Patrick A1 - Schöning, Michael Josef T1 - Concept for a solid-state multi-parameter sensor system for cell-culture monitoring JF - Electrochimica Acta. 54 (2009), H. 25 Sp. Iss. SI Y1 - 2009 SN - 0013-4686 SP - 6107 EP - 6112 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Bäcker, Matthias A1 - Delle, L. A1 - Poghossian, Arshak A1 - Biselli, Manfred A1 - Zang, Werner A1 - Wagner, P. A1 - Schöning, Michael Josef T1 - Electrochemical sensor array for bioprocess monitoring JF - Electrochimica Acta (2011) Y1 - 2011 VL - 56 IS - 26 SP - 9673 EP - 9678 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Bäcker, Matthias A1 - Rakowski, D. A1 - Poghossian, Arshak A1 - Biselli, Manfred A1 - Wagner, Patrick A1 - Schöning, Michael Josef T1 - Chip-based amperometric enzyme sensor system for monitoring of bioprocesses by flow-injection analysis JF - Journal of Biotechnology N2 - A microfluidic chip integrating amperometric enzyme sensors for the detection of glucose, glutamate and glutamine in cell-culture fermentation processes has been developed. The enzymes glucose oxidase, glutamate oxidase and glutaminase were immobilized by means of cross-linking with glutaraldehyde on platinum thin-film electrodes integrated within a microfluidic channel. The biosensor chip was coupled to a flow-injection analysis system for electrochemical characterization of the sensors. The sensors have been characterized in terms of sensitivity, linear working range and detection limit. The sensitivity evaluated from the respective peak areas was 1.47, 3.68 and 0.28 μAs/mM for the glucose, glutamate and glutamine sensor, respectively. The calibration curves were linear up to a concentration of 20 mM glucose and glutamine and up to 10 mM for glutamate. The lower detection limit amounted to be 0.05 mM for the glucose and glutamate sensor, respectively, and 0.1 mM for the glutamine sensor. Experiments in cell-culture medium have demonstrated a good correlation between the glutamate, glutamine and glucose concentrations measured with the chip-based biosensors in a differential-mode and the commercially available instrumentation. The obtained results demonstrate the feasibility of the realized microfluidic biosensor chip for monitoring of bioprocesses. Y1 - 2013 U6 - http://dx.doi.org/10.1016/j.jbiotec.2012.03.014 SN - 0168-1656 VL - 163 IS - 4 SP - 371 EP - 376 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Bäcker, Matthias A1 - Raue, Markus A1 - Schusser, Sebastian A1 - Jeitner, C. A1 - Breuer, L. A1 - Wagner, P. A1 - Poghossian, Arshak A1 - Förster, Arnold A1 - Mang, Thomas A1 - Schöning, Michael Josef T1 - Microfluidic chip with integrated microvalves based on temperature- and pH-responsive hydrogel thin films JF - Physica Status Solidi (a) N2 - Two types of microvalves based on temperature-responsive poly(N-isopropylacrylamide) (PNIPAAm) and pH-responsive poly(sodium acrylate) (PSA) hydrogel films have been developed and tested. The PNIPAAm and PSA hydrogel films were prepared by means of in situ photopolymerization directly inside the fluidic channel of a microfluidic chip fabricated by combining Si and SU-8 technologies. The swelling/shrinking properties and height changes of the PNIPAAm and PSA films inside the fluidic channel were studied at temperatures of deionized water from 14 to 36 °C and different pH values (pH 3–12) of Titrisol buffer, respectively. Additionally, in separate experiments, the lower critical solution temperature (LCST) of the PNIPAAm hydrogel was investigated by means of a differential scanning calorimetry (DSC) and a surface plasmon resonance (SPR) method. Mass-flow measurements have shown the feasibility of the prepared hydrogel films to work as an on-chip integrated temperature- or pH-responsive microvalve capable to switch the flow channel on/off. Y1 - 2012 U6 - http://dx.doi.org/10.1002/pssa.201100763 SN - 1862-6319 VL - 209 IS - 5 SP - 839 EP - 845 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Guo, Yuanyuan A1 - Miyamoto, Ko-ichiro A1 - Wagner, Torsten A1 - Schöning, Michael Josef A1 - Yoshinobu, Tatsuo T1 - Theoretical study and simulation of light-addressable potentiometric sensors JF - Physica status solidi (A) : applications and materials N2 - The light-addressable potentiometric sensor (LAPS) is a semiconductor-based potentiometric sensor using a light probe with an ability of detecting the concentration of biochemical species in a spatially resolved manner. As an important biomedical sensor, research has been conducted to improve its performance, for instance, to realize high-speed measurement. In this work, the idea of facilitating the device-level simulation, instead of using an equivalent-circuit model, is presented for detailed analysis and optimization of the performance of the LAPS. Both carrier distribution and photocurrent response have been simulated to provide new insight into both amplitude-mode and phase-mode operations of the LAPS. Various device parameters can be examined to effectively design and optimize the LAPS structures and setups for enhanced performance. Y1 - 2014 U6 - http://dx.doi.org/10.1002/pssa.201330354 SN - 0031-8965 VL - 211 IS - 6 SP - 1467 EP - 1472 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Huck, Christina A1 - Schiffels, Johannes A1 - Herrera, Cony N. A1 - Schelden, Maximilian A1 - Selmer, Thorsten A1 - Poghossian, Arshak A1 - Baumann, Marcus A1 - Wagner, Patrick A1 - Schöning, Michael Josef T1 - Metabolic responses of Escherichia coli upon glucose pulses captured by a capacitive field-effect sensor JF - Physica Status Solidi (A) N2 - Living cells are complex biological systems transforming metabolites taken up from the surrounding medium. Monitoring the responses of such cells to certain substrate concentrations is a challenging task and offers possibilities to gain insight into the vitality of a community influenced by the growth environment. Cell-based sensors represent a promising platform for monitoring the metabolic activity and thus, the “welfare” of relevant organisms. In the present study, metabolic responses of the model bacterium Escherichia coli in suspension, layered onto a capacitive field-effect structure, were examined to pulses of glucose in the concentration range between 0.05 and 2 mM. It was found that acidification of the surrounding medium takes place immediately after glucose addition and follows Michaelis–Menten kinetic behavior as a function of the glucose concentration. In future, the presented setup can, therefore, be used to study substrate specificities on the enzymatic level and may as well be used to perform investigations of more complex metabolic responses. Conclusions and perspectives highlighting this system are discussed. Y1 - 2013 U6 - http://dx.doi.org/10.1002/pssa.201200900 SN - 0031-8965 VL - 210 IS - 5 SP - 926 EP - 931 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Jablonski, Melanie A1 - Münstermann, Felix A1 - Nork, Jasmina A1 - Molinnus, Denise A1 - Muschallik, Lukas A1 - Bongaerts, Johannes A1 - Wagner, Torsten A1 - Keusgen, Michael A1 - Siegert, Petra A1 - Schöning, Michael Josef T1 - Capacitive field‐effect biosensor applied for the detection of acetoin in alcoholic beverages and fermentation broths JF - physica status solidi (a) applications and materials science N2 - An acetoin biosensor based on a capacitive electrolyte–insulator–semiconductor (EIS) structure modified with the enzyme acetoin reductase, also known as butane-2,3-diol dehydrogenase (Bacillus clausii DSM 8716ᵀ), is applied for acetoin detection in beer, red wine, and fermentation broth samples for the first time. The EIS sensor consists of an Al/p-Si/SiO₂/Ta₂O₅ layer structure with immobilized acetoin reductase on top of the Ta₂O₅ transducer layer by means of crosslinking via glutaraldehyde. The unmodified and enzyme-modified sensors are electrochemically characterized by means of leakage current, capacitance–voltage, and constant capacitance methods, respectively. KW - acetoin KW - acetoin reductase KW - alcoholic beverages KW - biosensors KW - capacitive field-effect sensors Y1 - 2021 U6 - http://dx.doi.org/10.1002/pssa.202000765 SN - 1862-6319 VL - 218 IS - 13 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Molinnus, Denise A1 - Bäcker, Matthias A1 - Siegert, Petra A1 - Willenberg, H. A1 - Poghossian, Arshak A1 - Keusgen, M. A1 - Schöning, Michael Josef T1 - Detection of Adrenaline Based on Substrate Recycling Amplification JF - Procedia Engineering N2 - An amperometric enzyme biosensor has been applied for the detection of adrenaline. The adrenaline biosensor has been prepared by modification of an oxygen electrode with the enzyme laccase that operates at a broad pH range between pH 3.5 to pH 8. The enzyme molecules were immobilized via cross-linking with glutaraldehyde. The sensitivity of the developed adrenaline biosensor in different pH buffer solutions has been studied. Y1 - 2015 U6 - http://dx.doi.org/10.1016/j.proeng.2015.08.708 SN - 1877-7058 N1 - Eurosensors 2015 VL - 120 SP - 540 EP - 543 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Molinnus, Denise A1 - Muschallik, Lukas A1 - Gonzalez, Laura Osorio A1 - Bongaerts, Johannes A1 - Wagner, Torsten A1 - Selmer, Thorsten A1 - Siegert, Petra A1 - Keusgen, Michael A1 - Schöning, Michael Josef T1 - Development and characterization of a field-effect biosensor for the detection of acetoin JF - Biosensors and Bioelectronics N2 - A capacitive electrolyte-insulator-semiconductor (EIS) field-effect biosensor for acetoin detection has been presented for the first time. The EIS sensor consists of a layer structure of Al/p-Si/SiO₂/Ta₂O₅/enzyme acetoin reductase. The enzyme, also referred to as butane-2,3-diol dehydrogenase from B. clausii DSM 8716T, has been recently characterized. The enzyme catalyzes the (R)-specific reduction of racemic acetoin to (R,R)- and meso-butane-2,3-diol, respectively. Two different enzyme immobilization strategies (cross-linking by using glutaraldehyde and adsorption) have been studied. Typical biosensor parameters such as optimal pH working range, sensitivity, hysteresis, linear concentration range and long-term stability have been examined by means of constant-capacitance (ConCap) mode measurements. Furthermore, preliminary experiments have been successfully carried out for the detection of acetoin in diluted white wine samples. Y1 - 2018 U6 - http://dx.doi.org/10.1016/j.bios.2018.05.023 VL - 115 SP - 1 EP - 6 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Molinnus, Denise A1 - Sorich, Maren A1 - Bartz, Alexander A1 - Siegert, Petra A1 - Willenberg, Holger S. A1 - Lisdat, Fred A1 - Poghossian, Arshak A1 - Keusgen, Michael A1 - Schöning, Michael Josef T1 - Towards an adrenaline biosensor based on substrate recycling amplification in combination with an enzyme logic gate JF - Sensors and Actuators B: Chemical N2 - An amperometric biosensor using a substrate recycling principle was realized for the detection of low adrenaline concentrations (1 nM) by measurements in phosphate buffer and Ringer’s solution at pH 6.5 and pH 7.4, respectively. In proof-of-concept experiments, a Boolean logic-gate principle has been applied to develop a digital adrenaline biosensor based on an enzyme AND logic gate. The obtained results demonstrate that the developed digital biosensor is capable for a rapid qualitative determination of the presence/absence of adrenaline in a YES/NO statement. Such digital biosensor could be used in clinical diagnostics for the control of a correct insertion of a catheter in the adrenal veins during adrenal venous-sampling procedure. Y1 - 2016 U6 - http://dx.doi.org/10.1016/j.snb.2016.06.064 SN - 0925-4005 VL - 237 SP - 190 EP - 195 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Muschallik, Lukas A1 - Kipp, Carina Ronja A1 - Recker, Inga A1 - Bongaerts, Johannes A1 - Pohl, Martina A1 - Gelissen, Melanie A1 - Schöning, Michael Josef A1 - Selmer, Thorsten A1 - Siegert, Petra T1 - Synthesis of α-hydroxy ketones and vicinal diols with the Bacillus licheniformis DSM 13T butane-2, 3-diol dehydrogenase JF - Journal of Biotechnology N2 - The enantioselective synthesis of α-hydroxy ketones and vicinal diols is an intriguing field because of the broad applicability of these molecules. Although, butandiol dehydrogenases are known to play a key role in the production of 2,3-butandiol, their potential as biocatalysts is still not well studied. Here, we investigate the biocatalytic properties of the meso-butanediol dehydrogenase from Bacillus licheniformis DSM 13T (BlBDH). The encoding gene was cloned with an N-terminal StrepII-tag and recombinantly overexpressed in E. coli. BlBDH is highly active towards several non-physiological diketones and α-hydroxyketones with varying aliphatic chain lengths or even containing phenyl moieties. By adjusting the reaction parameters in biotransformations the formation of either the α-hydroxyketone intermediate or the diol can be controlled. Y1 - 2020 SN - 2590-1559 U6 - http://dx.doi.org/10.1016/j.jbiotec.2020.09.016 VL - 202 IS - Vol. 324 SP - 61 EP - 70 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Muschallik, Lukas A1 - Molinnus, Denise A1 - Bongaerts, Johannes A1 - Pohl, Martina A1 - Wagner, Torsten A1 - Schöning, Michael Josef A1 - Siegert, Petra A1 - Selmer, Thorsten T1 - (R,R)-Butane-2,3-diol Dehydrogenase from Bacillus clausii DSM 8716T: Cloning and Expression of the bdhA-Gene, and Initial Characterization of Enzyme JF - Journal of Biotechnology N2 - The gene encoding a putative (R,R)-butane-2,3-diol dehydrogenase (bdhA) from Bacillus clausii DSM 8716T was isolated, sequenced and expressed in Escherichia coli. The amino acid sequence of the encoded protein is only distantly related to previously studied enzymes (identity 33–43%) and exhibited some uncharted peculiarities. An N-terminally StrepII-tagged enzyme variant was purified and initially characterized. The isolated enzyme catalyzed the (R)-specific oxidation of (R,R)- and meso-butane-2,3-diol to (R)- and (S)-acetoin with specific activities of 12 U/mg and 23 U/mg, respectively. Likewise, racemic acetoin was reduced with a specific activity of up to 115 U/mg yielding a mixture of (R,R)- and meso-butane-2,3-diol, while the enzyme reduced butane-2,3-dione (Vmax 74 U/mg) solely to (R,R)-butane-2,3-diol via (R)-acetoin. For these reactions only activity with the co-substrates NADH/NAD+ was observed. The enzyme accepted a selection of vicinal diketones, α-hydroxy ketones and vicinal diols as alternative substrates. Although the physiological function of the enzyme in B. clausii remains elusive, the data presented herein clearly demonstrates that the encoded enzyme is a genuine (R,R)-butane-2,3-diol dehydrogenase with potential for applications in biocatalysis and sensor development. Y1 - 2017 U6 - http://dx.doi.org/10.1016/j.jbiotec.2017.07.020 SN - 0168-1656 VL - 258 SP - 41 EP - 50 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Muschallik, Lukas A1 - Molinnus, Denise A1 - Jablonski, Melanie A1 - Kipp, Carina Ronja A1 - Bongaerts, Johannes A1 - Pohl, Martina A1 - Wagner, Torsten A1 - Schöning, Michael Josef A1 - Selmer, Thorsten A1 - Siegert, Petra T1 - Synthesis of α-hydroxy ketones and vicinal (R, R)-diols by Bacillus clausii DSM 8716ᵀ butanediol dehydrogenase JF - RSC Advances N2 - α-hydroxy ketones (HK) and 1,2-diols are important building blocks for fine chemical synthesis. Here, we describe the R-selective 2,3-butanediol dehydrogenase from B. clausii DSM 8716ᵀ (BcBDH) that belongs to the metal-dependent medium chain dehydrogenases/reductases family (MDR) and catalyzes the selective asymmetric reduction of prochiral 1,2-diketones to the corresponding HK and, in some cases, the reduction of the same to the corresponding 1,2-diols. Aliphatic diketones, like 2,3-pentanedione, 2,3-hexanedione, 5-methyl-2,3-hexanedione, 3,4-hexanedione and 2,3-heptanedione are well transformed. In addition, surprisingly alkyl phenyl dicarbonyls, like 2-hydroxy-1-phenylpropan-1-one and phenylglyoxal are accepted, whereas their derivatives with two phenyl groups are not substrates. Supplementation of Mn²⁺ (1 mM) increases BcBDH's activity in biotransformations. Furthermore, the biocatalytic reduction of 5-methyl-2,3-hexanedione to mainly 5-methyl-3-hydroxy-2-hexanone with only small amounts of 5-methyl-2-hydroxy-3-hexanone within an enzyme membrane reactor is demonstrated. Y1 - 2020 U6 - http://dx.doi.org/10.1039/D0RA02066D SN - 2046-2069 VL - 10 SP - 12206 EP - 12216 PB - Royal Society of Chemistry (RSC) CY - Cambridge ER - TY - JOUR A1 - Pilas, Johanna A1 - Iken, Heiko A1 - Selmer, Thorsten A1 - Keusgen, Michael A1 - Schöning, Michael Josef T1 - Development of a multi‐parameter sensor chip for the simultaneous detection of organic compounds in biogas processes JF - Physica status solidi (a) N2 - An enzyme-based multi-parameter biosensor is developed for monitoring the concentration of formate, d-lactate, and l-lactate in biological samples. The sensor is based on the specific dehydrogenation by an oxidized β-nicotinamide adenine dinucleotide (NAD+)-dependent dehydrogenase (formate dehydrogenase, d-lactic dehydrogenase, and l-lactic dehydrogenase, respectively) in combination with a diaphorase from Clostridium kluyveri (EC 1.8.1.4). The enzymes are immobilized on a platinum working electrode by cross-linking with glutaraldehyde (GA). The principle of the determination scheme in case of l-lactate is as follows: l-lactic dehydrogenase (l-LDH) converts l-lactate into pyruvate by reaction with NAD+. In the presence of hexacyanoferrate(III), the resulting reduced β-nicotinamide adenine dinucleotide (NADH) is then regenerated enzymatically by diaphorase. The electrochemical detection is based on the current generated by oxidation of hexacyanoferrate(II) at an applied potential of +0.3 V vs. an Ag/AgCl reference electrode. The biosensor will be electrochemically characterized in terms of linear working range and sensitivity. Additionally, the successful practical application of the sensor is demonstrated in an extract from maize silage. Y1 - 2015 U6 - http://dx.doi.org/10.1002/pssa.201431894 SN - 1862-6319 VL - 212 IS - 6 SP - 1306 EP - 1312 PB - Wiley CY - Weinheim ER - TY - JOUR A1 - Pilas, Johanna A1 - Mariano, K. A1 - Keusgen, M. A1 - Selmer, Thorsten A1 - Schöning, Michael Josef T1 - Optimization of an Enzyme-based Multi-parameter Biosensor for Monitoring Biogas Processes JF - Procedia Engineering Y1 - 2015 U6 - http://dx.doi.org/10.1016/j.proeng.2015.08.702 SN - 1877-7058 N1 - Part of special issue "Eurosensors 2015" VL - 120 SP - 532 EP - 535 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Pilas, Johanna A1 - Yazici, Y. A1 - Selmer, Thorsten A1 - Keusgen, M. A1 - Schöning, Michael Josef T1 - Application of a portable multi-analyte biosensor for organic acid determination in silage JF - Sensors N2 - Multi-analyte biosensors may offer the opportunity to perform cost-effective and rapid analysis with reduced sample volume, as compared to electrochemical biosensing of each analyte individually. This work describes the development of an enzyme-based biosensor system for multi-parametric determination of four different organic acids. The biosensor array comprises five working electrodes for simultaneous sensing of ethanol, formate, d-lactate, and l-lactate, and an integrated counter electrode. Storage stability of the biosensor was evaluated under different conditions (stored at +4 °C in buffer solution and dry at −21 °C, +4 °C, and room temperature) over a period of 140 days. After repeated and regular application, the individual sensing electrodes exhibited the best stability when stored at −21 °C. Furthermore, measurements in silage samples (maize and sugarcane silage) were conducted with the portable biosensor system. Comparison with a conventional photometric technique demonstrated successful employment for rapid monitoring of complex media. Y1 - 2018 U6 - http://dx.doi.org/10.3390/s18051470 SN - 1424-8220 VL - 18 IS - 5 PB - MDPI CY - Basel ER -