TY - CHAP A1 - Ulmer, Jessica A1 - Braun, Sebastian A1 - Cheng, Chi-Tsun A1 - Dowey, Steve A1 - Wollert, Jörg T1 - Adapting augmented reality systems to the users’ needs using gamification and error solving methods T2 - Procedia CIRP - 54th CIRP CMS 2021 - Towards Digitalized Manufacturing 4.0 N2 - Animations of virtual items in AR support systems are typically predefined and lack interactions with dynamic physical environments. AR applications rarely consider users’ preferences and do not provide customized spontaneous support under unknown situations. This research focuses on developing adaptive, error-tolerant AR systems based on directed acyclic graphs and error resolving strategies. Using this approach, users will have more freedom of choice during AR supported work, which leads to more efficient workflows. Error correction methods based on CAD models and predefined process data create individual support possibilities. The framework is implemented in the Industry 4.0 model factory at FH Aachen. KW - Augmented Reality KW - Adaptive Systems KW - Gamification KW - Error Recovery Y1 - 2021 U6 - https://doi.org/10.1016/j.procir.2021.11.024 SN - 2212-8271 N1 - CIRP CMS 2021 - 54th CIRP Conference on Manufacturing Systems, September 22-24, 2021, online VL - 104 SP - 140 EP - 145 PB - Elsevier CY - Amsterdam ER - TY - CHAP A1 - Ulmer, Jessica A1 - Braun, Sebastian A1 - Wollert, Jörg T1 - Adaptive VR-Produktionsumgebungen für Evaluations- und Schulungstätigkeiten T1 - Adaptive VR production environments for evaluation and training purposes T2 - Automation 2021: Navigating towards resilient Production N2 - Industrie 4.0 stellt viele Herausforderungen an produzierende Unternehmen und ihre Beschäf-tigten. Innovative und effektive Trainingsstrategien sind erforderlich, um mit den sich schnell verändernden Produktionsumgebungen und neuen Fertigungstechnologien Schritt halten zu können. Virtual Reality (VR) bietet neue Möglichkeiten für On-the-Job, On-Demand- und Off-Premise-Schulungen. Diese Arbeit stellt ein neues VR Schulungssystem vor, welches sich flexible an unterschiedliche Trainingsobjekte auf Grundlage von Rezepten und CAD Modellen anpassen lässt. Das Konzept basiert auf gerichteten azyklischen Graphen und einem Level-system. Es ermöglicht eine benutzerindividuelle Lerngeschwindigkeit mittels visueller Ele-mente. Das Konzept wurde für einen mechanischen Anwendungsfall mit Industriekomponen-ten implementiert und in der Industrie 4.0-Modellfabrik der FH Aachen umgesetzt. N2 - Industry 4.0 poses many challenges for manufacturing companies and their employees. Inno-vative and effective training strategies are needed to keep pace with rapidly changing produc-tion environments and new manufacturing technologies. Virtual reality (VR) offers new oppor-tunities for on-the-job, on-demand, and off-premise training. This work presents a new VR training system that can be flexibly adapted to different training objects based on recipes and CAD models. The concept is based on directed acyclic graphs and a level system. It allows a user-individual learning speed by means of visual elements. The concept was implemented for a mechanical use case with industrial components and implemented in the industry 4.0 model factory of the FH Aachen University of Applied Sciences. Y1 - 2021 SN - 978-3-18-092392-5 U6 - https://doi.org/10.51202/9783181023921-55 SN - 0083-5560 N1 - 22. Leitkongress der Mess- und Automatisierungstechnik AUTOMATION 2021 - Navigating towards resilient Production, 29. und 30. Juni 2021 SP - 55 EP - 64 PB - VDI CY - Düsseldorf ER - TY - CHAP A1 - Wild, Dominik A1 - Czupalla, Markus A1 - Förstner, Roger T1 - Modeling, prediction and test of additive manufactured integral structures with embedded lattice and phase change material applying Infused Thermal Solutions (ITS) T2 - ICES104: Advances in Thermal Control Technology N2 - Infused Thermal Solutions (ITS) introduces a method for passive thermal control to stabilize structural components thermally without active heating and cooling systems, but with phase change material (PCM) for thermal energy storage (TES), in combination with lattice - both embedded in additive manufactured functional structures. In this ITS follow-on paper a thermal model approach and associated predictions are presented, related on the ITS functional breadboards developed at FH Aachen. Predictive TES by PCM is provided by a specially developed ITS PCM subroutine, which is applicable in ESATAN. The subroutine is based on the latent heat storage (LHS) method to numerically embed thermo-physical PCM behavior. Furthermore, a modeling approach is introduced to numerically consider the virtual PCM/lattice nodes within the macro-encapsulated PCM voids of the double wall ITS design. Related on these virtual nodes, in-plane and out-of-plane conductive links are defined. The recent additive manufactured ITS breadboard series are thermally cycled in the thermal vacuum chamber, both with and without embedded PCM. Related on breadboard hardware tests, measurement results are compared with predictions and are subsequently correlated. The results of specific simulations and measurements are presented. Recent predictive results of star tracker analyses are also presented in ICES-2021-106, based on this ITS PCM subroutine. KW - latent heat KW - thermo-physical KW - lattice KW - ESATAN KW - subroutine KW - PCM KW - ITS Y1 - 2021 N1 - 50th International Conference on Environmental Systems, 12-15 July 2021, held virtually PB - Texas Tech University CY - Lubbock, Tex. ER - TY - CHAP A1 - Šakić, Bogdan A1 - Milijaš, Aleksa A1 - Marinković, Marko A1 - Butenweg, Christoph A1 - Klinkel, Sven ED - Papadrakakis, Manolis ED - Fragiadakis, Michalis T1 - Influence of prior in-plane damage on the out-of-plane response of non-load bearing unreinforced masonry walls under seismic load T2 - Proceedings of COMPDYN 2021 N2 - Reinforced concrete frames with masonry infill walls are popular form of construction all over the world as well in seismic regions. While severe earthquakes can cause high level of damage of both reinforced concrete and masonry infills, earthquakes of lower to medium intensity some-times can cause significant level of damage of masonry infill walls. Especially important is the level of damage of face loaded infill masonry walls (out-of-plane direction) as out-of-plane load cannot only bring high level of damage to the wall, it can also be life-threating for the people near the wall. The response in out-of-plane direction directly depends on the prior in-plane damage, as previous investigation shown that it decreases resistance capacity of the in-fills. Behaviour of infill masonry walls with and without prior in-plane load is investigated in the experimental campaign and the results are presented in this paper. These results are later compared with analytical approaches for the out-of-plane resistance from the literature. Conclusions based on the experimental campaign on the influence of prior in-plane damage on the out-of-plane response of infill walls are compared with the conclusions from other authors who investigated the same problematic. KW - Earthquake Engineering KW - Unreinforced masonry walls KW - Out-of-plane load KW - In- plane damage KW - Out-of-plane failure Y1 - 2021 SN - 9786188507258 U6 - https://doi.org/10.7712/120121.8527.18913 SN - 2623-3347 N1 - COMPDYN 2021, 28-30 June 2021, Streamed from Athens, Greece, 8th International Conference on Computational Methods in Structural Dynamics and Earthquake Engineering SP - 808 EP - 828 PB - National Technical University of Athens CY - Athen ER -