TY - JOUR A1 - Figueroa-Miranda, Gabriela A1 - Feng, Lingyan A1 - Shiu, Simon Chi-Chin A1 - Dirkzwager, Roderick Marshall A1 - Cheung, Yee-Wai A1 - Tanner, Julian Alexander A1 - Schöning, Michael Josef A1 - Offenhäusser, Andreas A1 - Mayer, Dirk T1 - Aptamer-based electrochemical biosensor for highly sensitive and selective malaria detection with adjustable dynamic response range and reusability JF - Sensor and Actuators B: Chemical N2 - Malaria infection remains a significant risk for much of the population of tropical and subtropical areas, particularly in developing countries. Therefore, it is of high importance to develop sensitive, accurate and inexpensive malaria diagnosis tests. Here, we present a novel aptamer-based electrochemical biosensor (aptasensor) for malaria detection by impedance spectroscopy, through the specific recognition between a highly discriminatory DNA aptamer and its target Plasmodium falciparum lactate dehydrogenase (PfLDH). Interestingly, due to the isoelectric point (pI) of PfLDH, the aptasensor response showed an adjustable detection range based on the different protein net-charge at variable pH environments. The specific aptamer recognition allows sensitive protein detection with an expanded detection range and a low detection limit, as well as a high specificity for PfLDH compared to analogous proteins. The specific feasibility of the aptasensor is further demonstrated by detection of the target PfLDH in human serum. Furthermore, the aptasensor can be easily regenerated and thus applied for multiple usages. The robustness, sensitivity, and reusability of the presented aptasensor make it a promising candidate for point-of-care diagnostic systems. Y1 - 2018 U6 - https://doi.org/10.1016/j.snb.2017.07.117 SN - 0925-4005 VL - 255 IS - P1 SP - 235 EP - 243 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Feucht, Nikolaus A1 - Schönbach, Etienne Michael A1 - Lanzl, Ines A1 - Kotliar, Konstantin A1 - Lohmann, Chris Patrick A1 - Maier, Mathias T1 - Changes in the foveal microstructure after intravitreal bevacizumab application in patients with retinal vascular disease JF - Clinical Ophthalmology Y1 - 2013 SN - 1177-5483 VL - 7 SP - 173 EP - 178 PB - Dove Medical Press CY - Auckland, New Zealand ER - TY - JOUR A1 - Faßbender, F. A1 - Schmitt, G. A1 - Schöning, Michael Josef A1 - Lüth, H. A1 - Buß, G. A1 - Schultze, J. W. T1 - Optimization of passivation layers for corrosion protection of silicon-based microelectrode arrays JF - Sensors and Actuators B. 68 (2000), H. 1-3 Y1 - 2000 SN - 0925-4005 SP - 128 EP - 133 ER - TY - JOUR A1 - Faßbender, F. A1 - Schmitt, G. A1 - Schöning, Michael Josef A1 - Lüth, H. A1 - Buß, G. A1 - Schultze, J. W. T1 - Passivation and corrosion of microsensor devices exemplified at microelectrode arrays JF - Proceedings : The Hague, The Netherlands, September 12 - 15, 1999 / [ed. by M. Bartek]. Vol 1. Y1 - 1999 SN - 90-76699-02-X N1 - Eurosensors ; (13, 1999, 's-Gravenhage) ; Eurosensors ; (13 : ; 1999.09.12-15 : ; The Hague) ; European Conference on Solid-State Transducers ; (13 : ; 1999.09.12-15 : ; The Hague) SP - 953 EP - 956 CY - The Hague, The Netherlands ER - TY - JOUR A1 - Ermolenko, Y.E. A1 - Vlasov, Y.G. A1 - Kolodnikov, V.V. A1 - Shabaldkin, D. A. A1 - Kloock, Joachim P. A1 - Schöning, Michael Josef T1 - Diffusion of radioactive tracers (204Tl, 110mAg) and ionic conductivity in membrane materials for the chemical sensors JF - Advances in nuclear and radiochemistry : extended abstracts of papers presented at the Sixth International Conference on Nuclear and Radiochemistry (NRC-6), 29 August to 3 September 2004, Aachen, Germany ; in cooperation with University of Cologne, GDCh, FECS, OECD-NEA and IAEA / Syed M. Qaim ... (eds.). Y1 - 2004 SN - 3893363629 N1 - Schriften des Forschungszentrums Jülich Reihe Allgemeines und Interdisziplinäres ; 3. International Conference on Nuclear and Radiochemistry ; (6, 2004, Aachen) SP - 483 EP - 485 PB - Forschungszentrum Jülich, Zentralbibliothek CY - Jülich ER - TY - JOUR A1 - Ermolenko, Y. E. A1 - Yoshinobu, T. A1 - Mourzina, Y. G. A1 - Vlasov, Y. G. A1 - Schöning, Michael Josef A1 - Iwasaki, H. T1 - Laserscanned transducer (LSST) as a multisensor system JF - Sensors and Actuators B. 103 (2004), H. 1-2 Y1 - 2004 SN - 0925-4005 SP - 457 EP - 462 ER - TY - JOUR A1 - Ermelenko, Y. A1 - Yoshinobu, T. A1 - Mourzina, Y. A1 - Schöning, Michael Josef A1 - Vlasov, Y. A1 - Iwasaki, H. T1 - The hybrid K+/Ca2+ sensor based on laser scanned silicon transducer for multi-component analysis JF - Proceedings of ICAS 2001, IUPAC [3rd] International Congress on Analytical Sciences 2001 : August 6 - 10, 2001, Waseda University, Tokyo Y1 - 2002 N1 - International Congress on Analytical Sciences <2001, Tokyo> ; International Union of Pure and Applied Chemistry. Pure and applied chemistry ; 73,10. ; Analytical sciences ; 17.2001, special issue SP - i777 EP - i780 PB - Japan Society for Analytical Chemistry CY - Tokyo ER - TY - CHAP A1 - Ermelenko, Y. A1 - Yoshinobu, T. A1 - Mourzina, Y. A1 - Schöning, Michael Josef A1 - Vlasov, Y. A1 - Iwasaki, H. T1 - A multisensor based on laser scanned silicon transducer (LSST): development and properties T2 - Eurosensors XVII : the 17th European Conference on Solid-State Transducers ; University of Minho, Guimarães, Portugal, September 21 - 24, 2003 Y1 - 2003 SP - 72 EP - 73 ER - TY - JOUR A1 - Ermelenko, Y. A1 - Yoshinobu, T. A1 - Mourzina, Y. A1 - Schöning, Michael Josef A1 - Furuichi, K. A1 - Levichev, S. A1 - Vlasov, Y. A1 - Iwasaki, H. T1 - The double K+/Ca2+ sensor based on laser scanned silicon transducer (LSST) for multicomponent analysis JF - Talanta. 59 (2003), H. 4 Y1 - 2003 SN - 0039-9140 SP - 785 EP - 795 ER - TY - JOUR A1 - Ermelenko, Y. A1 - Yoshinobu, T. A1 - Mourzina, Y. A1 - Furuichi, K. A1 - Levichev, S. A1 - Vlasov, Y. A1 - Schöning, Michael Josef A1 - Iwasaki, H. T1 - Lithium sensor based on the laser scanning semiconductor transducer JF - Analytica Chimica Acta. 459 (2002), H. 1 Y1 - 2002 SN - 0378-4304 SP - 1 EP - 9 ER - TY - JOUR A1 - Ermelenko, Y. A1 - Yoshinobu, T. A1 - Mourzina, Y. A1 - Furuichi, K. A1 - Iwasaki, H. A1 - Vlasov, Y. A1 - Schöning, Michael Josef T1 - Technology of photocurable polymeric membranes for integrated LAPS JF - Proceedings of the 5th East Asian Conference on Chemical Sensors; the 33rd Chemical Sensor Symposium : December 4 - 7, 2001, Huis Ten Bosch, Sasebo-shi, Nagasaki, Japan / Japan Association of Chemical Sensors; the Electrochemical Society of Japan Y1 - 2001 N1 - Chemical sensors; 17.2001 Suppl. B; East Asian Conference on Chemical Sensors ; (5, 2001; Nagasaki) SP - 66 EP - 68 PB - Japan Association of Chemical Sensors CY - Kasuga, Fukuoka-ken ER - TY - JOUR A1 - Ermelenko, Y. A1 - Yoshinobu, T A1 - Mourzina, Y. A1 - Levichev, S. A1 - Furuichi, K. A1 - Vlasov, Y. A1 - Schöning, Michael Josef A1 - Iwasaki, H. T1 - Photocurable membranes for ion-selective light-addressable potentiometric sensors JF - Sensors and Actuators B. 85 (2002), H. 1-2 Y1 - 2002 SN - 0925-4005 SP - 79 EP - 85 ER - TY - JOUR A1 - Erbayraktar, Zubeyde A1 - Yilmaz, Osman A1 - Temiz Artmann, Aysegül A1 - Cehreli, Ruksan A1 - Coker, Canan T1 - Effects of Selenium Supplementation on Antioxidant Defense and Glucose Homeostasis in Experimental Diabetes Mellitus JF - Biological Trace Element Research Y1 - 2007 SN - 1559-0720 VL - 118 IS - 3 SP - 217 EP - 226 ER - TY - JOUR A1 - Engelmann, Ulrich M. A1 - Simsek, Beril A1 - Shalaby, Ahmed A1 - Krause, Hans-Joachim T1 - Key contributors to signal generation in frequency mixing magnetic detection (FMMD): an in silico study JF - Sensors N2 - Frequency mixing magnetic detection (FMMD) is a sensitive and selective technique to detect magnetic nanoparticles (MNPs) serving as probes for binding biological targets. Its principle relies on the nonlinear magnetic relaxation dynamics of a particle ensemble interacting with a dual frequency external magnetic field. In order to increase its sensitivity, lower its limit of detection and overall improve its applicability in biosensing, matching combinations of external field parameters and internal particle properties are being sought to advance FMMD. In this study, we systematically probe the aforementioned interaction with coupled Néel–Brownian dynamic relaxation simulations to examine how key MNP properties as well as applied field parameters affect the frequency mixing signal generation. It is found that the core size of MNPs dominates their nonlinear magnetic response, with the strongest contributions from the largest particles. The drive field amplitude dominates the shape of the field-dependent response, whereas effective anisotropy and hydrodynamic size of the particles only weakly influence the signal generation in FMMD. For tailoring the MNP properties and parameters of the setup towards optimal FMMD signal generation, our findings suggest choosing large particles of core sizes dc > 25 nm nm with narrow size distributions (σ < 0.1) to minimize the required drive field amplitude. This allows potential improvements of FMMD as a stand-alone application, as well as advances in magnetic particle imaging, hyperthermia and magnetic immunoassays. KW - key performance indicators KW - magnetic biosensing KW - coupled Néel–Brownian relaxation dynamics KW - frequency mixing magnetic detection KW - magnetic relaxation KW - micromagnetic simulation KW - magnetic nanoparticles Y1 - 2024 U6 - https://doi.org/10.3390/s24061945 SN - 1424-8220 N1 - This article belongs to the Special Issue "Advances in Magnetic Sensors and Their Applications" VL - 24 IS - 6 PB - MDPI CY - Basel ER - TY - JOUR A1 - Engelmann, Ulrich M. A1 - Shasha, Carolyn A1 - Teeman, Eric A1 - Slabu, Iona A1 - Krishnan, Kannan M. T1 - Predicting size-dependent heating efficiency of magnetic nanoparticles from experiment and stochastic Néel-Brown Langevin simulation JF - Journal of Magnetism and Magnetic Materials Y1 - 2019 U6 - https://doi.org/10.1016/j.jmmm.2018.09.041 SN - 0304-8853 VL - 471 IS - 1 SP - 450 EP - 456 PB - Elsevier CY - Amsterdam ER - TY - CHAP A1 - Engelmann, Ulrich M. A1 - Shasha, Carolyn A1 - Slabu, Ioana T1 - Magnetic nanoparticle relaxation in biomedical application: focus on simulating nanoparticle heating T2 - Magnetic nanoparticles in human health and medicine Y1 - 2021 SN - 978-1-119-75467-1 SP - 327 EP - 354 PB - Wiley-Blackwell CY - Hoboken, New Jeersey ER - TY - JOUR A1 - Engelmann, Ulrich M. A1 - Shalaby, Ahmed A1 - Shasha, Carolyn A1 - Krishnan, Kannan M. A1 - Krause, Hans-Joachim T1 - Comparative modeling of frequency mixing measurements of magnetic nanoparticles using micromagnetic simulations and Langevin theory JF - Nanomaterials N2 - Dual frequency magnetic excitation of magnetic nanoparticles (MNP) enables enhanced biosensing applications. This was studied from an experimental and theoretical perspective: nonlinear sum-frequency components of MNP exposed to dual-frequency magnetic excitation were measured as a function of static magnetic offset field. The Langevin model in thermodynamic equilibrium was fitted to the experimental data to derive parameters of the lognormal core size distribution. These parameters were subsequently used as inputs for micromagnetic Monte-Carlo (MC)-simulations. From the hysteresis loops obtained from MC-simulations, sum-frequency components were numerically demodulated and compared with both experiment and Langevin model predictions. From the latter, we derived that approximately 90% of the frequency mixing magnetic response signal is generated by the largest 10% of MNP. We therefore suggest that small particles do not contribute to the frequency mixing signal, which is supported by MC-simulation results. Both theoretical approaches describe the experimental signal shapes well, but with notable differences between experiment and micromagnetic simulations. These deviations could result from Brownian relaxations which are, albeit experimentally inhibited, included in MC-simulation, or (yet unconsidered) cluster-effects of MNP, or inaccurately derived input for MC-simulations, because the largest particles dominate the experimental signal but concurrently do not fulfill the precondition of thermodynamic equilibrium required by Langevin theory. KW - Magnetic nanoparticles KW - Frequency mixing magnetic detection KW - Langevin theory KW - Micromagnetic simulation KW - Nonequilibrium dynamics Y1 - 2021 SN - 2079-4991 U6 - https://doi.org/10.3390/nano11051257 N1 - This article belongs to the Special Issue Applications and Properties of Magnetic Nanoparticles VL - 11 IS - 5 SP - 1 EP - 16 PB - MDPI CY - Basel ER - TY - JOUR A1 - Engelmann, Ulrich M. A1 - Seifert, Julian A1 - Mues, Benedikt A1 - Roitsch, Stefan A1 - Ménager, Christine A1 - Schmidt, Annette M. A1 - Slabu, Ioana T1 - Heating efficiency of magnetic nanoparticles decreases with gradual immobilization in hydrogels JF - Journal of Magnetism and Magnetic Materials Y1 - 2019 U6 - https://doi.org/10.1016/j.jmmm.2018.09.113 SN - 0304-8853 VL - 471 IS - 1 SP - 486 EP - 494 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Engelmann, Ulrich M. A1 - Roeth, Anjali A.J. A1 - Eberbeck, Dietmar A1 - Buhl, Eva Miriam A1 - Neumann, Ulf Peter A1 - Schmitz-Rode, Thomas A1 - Slabu, Ioana T1 - Combining Bulk Temperature and Nanoheating Enables Advanced Magnetic Fluid Hyperthermia Efficacy on Pancreatic Tumor Cells JF - Scientific Reports N2 - Many efforts are made worldwide to establish magnetic fluid hyperthermia (MFH) as a treatment for organ-confined tumors. However, translation to clinical application hardly succeeds as it still lacks of understanding the mechanisms determining MFH cytotoxic effects. Here, we investigate the intracellular MFH efficacy with respect to different parameters and assess the intracellular cytotoxic effects in detail. For this, MiaPaCa-2 human pancreatic tumor cells and L929 murine fibroblasts were loaded with iron-oxide magnetic nanoparticles (MNP) and exposed to MFH for either 30 min or 90 min. The resulting cytotoxic effects were assessed via clonogenic assay. Our results demonstrate that cell damage depends not only on the obvious parameters bulk temperature and duration of treatment, but most importantly on cell type and thermal energy deposited per cell during MFH treatment. Tumor cell death of 95% was achieved by depositing an intracellular total thermal energy with about 50% margin to damage of healthy cells. This is attributed to combined intracellular nanoheating and extracellular bulk heating. Tumor cell damage of up to 86% was observed for MFH treatment without perceptible bulk temperature rise. Effective heating decreased by up to 65% after MNP were internalized inside cells. Y1 - 2018 U6 - https://doi.org/10.1038/s41598-018-31553-9 SN - 2045-2322 VL - 8 IS - 1 SP - Article number 13210 PB - Springer Nature CY - Cham ER - TY - JOUR A1 - Engelmann, Ulrich M. A1 - Pourshahidi, Mohammad Ali A1 - Shalaby, Ahmed A1 - Krause, Hans-Joachim T1 - Probing particle size dependency of frequency mixing magnetic detection with dynamic relaxation simulation JF - Journal of Magnetism and Magnetic Materials N2 - Biomedical applications of magnetic nanoparticles (MNP) fundamentally rely on the particles’ magnetic relaxation as a response to an alternating magnetic field. The magnetic relaxation complexly depends on the interplay of MNP magnetic and physical properties with the applied field parameters. It is commonly accepted that particle core size is a major contributor to signal generation in all the above applications, however, most MNP samples comprise broad distribution spanning nm and more. Therefore, precise knowledge of the exact contribution of individual core sizes to signal generation is desired for optimal MNP design generally for each application. Specifically, we present a magnetic relaxation simulation-driven analysis of experimental frequency mixing magnetic detection (FMMD) for biosensing to quantify the contributions of individual core size fractions towards signal generation. Applying our method to two different experimental MNP systems, we found the most dominant contributions from approx. 20 nm sized particles in the two independent MNP systems. Additional comparison between freely suspended and immobilized MNP also reveals insight in the MNP microstructure, allowing to use FMMD for MNP characterization, as well as to further fine-tune its applicability in biosensing. Y1 - 2022 U6 - https://doi.org/10.1016/j.jmmm.2022.169965 SN - 0304-8853 VL - 563 IS - In progress, Art. No. 169965 PB - Elsevier CY - Amsterdam ER -