TY - CHAP A1 - Dilthey, Ulrich A1 - Mund, F. A1 - Raupach, Michael A1 - Schleser, Markus A1 - Walk-Lauffer, Bernd T1 - Improvement of textile reinforced concrete by polymer additives T2 - ICPIC '04 : 11th International Congress on Polymers in Concrete : 2nd-4th June, 2004 at BAM, Berlin, Germany : proceedings / ed. by M. Maultzsch Y1 - 2004 SN - 3-00-013706-8 SP - 469 EP - 476 PB - BAM CY - Berlin ER - TY - CHAP A1 - Dey, Thomas A1 - Elsen, Ingo A1 - Ferrein, Alexander A1 - Frauenrath, Tobias A1 - Reke, Michael A1 - Schiffer, Stefan ED - Makedon, Fillia T1 - CO2 Meter: a do-it-yourself carbon dioxide measuring device for the classroom T2 - PETRA 2021: The 14th PErvasive Technologies Related to Assistive Environments Conference N2 - In this paper we report on CO2 Meter, a do-it-yourself carbon dioxide measuring device for the classroom. Part of the current measures for dealing with the SARS-CoV-2 pandemic is proper ventilation in indoor settings. This is especially important in schools with students coming back to the classroom even with high incidents rates. Static ventilation patterns do not consider the individual situation for a particular class. Influencing factors like the type of activity, the physical structure or the room occupancy are not incorporated. Also, existing devices are rather expensive and often provide only limited information and only locally without any networking. This leaves the potential of analysing the situation across different settings untapped. Carbon dioxide level can be used as an indicator of air quality, in general, and of aerosol load in particular. Since, according to the latest findings, SARS-CoV-2 can be transmitted primarily in the form of aerosols, carbon dioxide may be used as a proxy for the risk of a virus infection. Hence, schools could improve the indoor air quality and potentially reduce the infection risk if they actually had measuring devices available in the classroom. Our device supports schools in ventilation and it allows for collecting data over the Internet to enable a detailed data analysis and model generation. First deployments in schools at different levels were received very positively. A pilot installation with a larger data collection and analysis is underway. KW - embedded hardware KW - sensor networks KW - information systems KW - education KW - do-it-yourself Y1 - 2021 SN - 9781450387927 U6 - http://dx.doi.org/10.1145/3453892.3462697 N1 - PETRA '21: The 14th PErvasive Technologies Related to Assistive Environments Conference Corfu Greece 29 June 2021- 2 July 2021 SP - 292 EP - 299 PB - Association for Computing Machinery CY - New York ER - TY - CHAP A1 - Detert, T. A1 - Gligorevic, Snjezana A1 - Haak, W. A1 - Sorger, Ulrich T1 - Maximum-likelihood channel estimation using the spreading matrix in fast time-variant frequency selective channels T2 - Proceedings of the 3rd IEEE International Symposium on Signal Processing and Information Technology, ISSPIT 2003 : 14 - 17 December 2003, Darmstadt, Germany Y1 - 2003 SN - 0-7803-8292-7 SP - 347 EP - 350 ER - TY - CHAP A1 - Dersch, Jürgen A1 - Geyer, Michael A1 - Herrmann, Ulf A1 - Jones, Scott A. A1 - Kelly, Bruce A1 - Kistner, Rainer A1 - Ortmanns, Winfried A1 - Pitz-Paal, Robert A1 - Price, Henry ED - Steinfeld, Aldo T1 - Trough integration into power plants : a study on the performance and economy of integrated solar combined cycle systems T2 - Proceedings of the 11th SolarPACES International Symposium on Concentrated Solar Power and Chemical Energy Technologies : September 4 - 6, 2002, Zurich, Switzerland / Paul Scherrer Institut, PSI; ETH, Eidgenössische Technische Hochschule Zürich Y1 - 2002 SN - 3-9521409-3-7 SP - 661 EP - 671 PB - Paul Scherrer Inst. CY - Villingen ER - TY - CHAP A1 - Dersch, Jürgen A1 - Geyer, Michael A1 - Herrmann, Ulf A1 - Jones, Scott A. A1 - Kelly, Bruce A1 - Kistner, Rainer A1 - Ortmanns, Winfried A1 - Pitz-Paal, Robert A1 - Price, Henry ED - Pearson, J. Boise T1 - Solar Trough Integration Into Combined Cycle Systems T2 - Solar engineering 2002 : proceedings of the International Solar Energy Conference ; presented at the 2002 International Solar Energy Conference, a part of Solar 2002 - Sunrise on the Reliable Energy Economy, June 15 - 20, 2002, Reno, Nevada Y1 - 2002 SN - 0-7918-1689-3 U6 - http://dx.doi.org/doi:10.1115/SED2002-1072 SP - 351 EP - 359 PB - ASME ER - TY - CHAP A1 - de Honde, Lukas A1 - Porst, Dariusz A1 - Digel, Ilya ED - Fischerauer, Alice T1 - A randomized, observational thermographic study of the neck region before and after a physiotherapeutic intervention T2 - 2nd YRA MedTech Symposium 2017 : June 8th - 9th / 2017 / Hochschule Ruhr-West Y1 - 2017 SN - 978-3-9814801-9-1 U6 - http://dx.doi.org/10.17185/duepublico/43984 N1 - A young researchers track of the 7th IEEE Workshop & SENSORICA 2017 SP - 122 EP - 123 PB - Universität Duisburg-Essen CY - Duisburg ER - TY - CHAP A1 - Dannen, Tammo A1 - Schindele, Benedikt A1 - Prümmer, Marcel A1 - Arntz, Kristian A1 - Bergs, Thomas T1 - Methodology for the self-optimizing determination of additive manufacturing process eligibility and optimization potentials in toolmaking T2 - Procedia CIRP N2 - Additive Manufacturing (AM) of metallic workpieces faces a continuously rising technological relevance and market size. Producing complex or highly strained unique workpieces is a significant field of application, making AM highly relevant for tool components. Its successful economic application requires systematic workpiece based decisions and optimizations. Considering geometric and technological requirements as well as the necessary post-processing makes deciding effortful and requires in-depth knowledge. As design is usually adjusted to established manufacturing, associated technological and strategic potentials are often neglected. To embed AM in a future proof industrial environment, software-based self-learning tools are necessary. Integrated into production planning, they enable companies to unlock the potentials of AM efficiently. This paper presents an appropriate methodology for the analysis of process-specific AM-eligibility and optimization potential, added up by concrete optimization proposals. For an integrated workpiece characterization, proven methods are enlarged by tooling-specific figures. The first stage of the approach specifies the model’s initialization. A learning set of tooling components is described using the developed key figure system. Based on this, a set of applicable rules for workpiece-specific result determination is generated through clustering and expert evaluation. Within the following application stage, strategic orientation is quantified and workpieces of interest are described using the developed key figures. Subsequently, the retrieved information is used for automatically generating specific recommendations relying on the generated ruleset of stage one. Finally, actual experiences regarding the recommendations are gathered within stage three. Statistic learning transfers those to the generated ruleset leading to a continuously deepening knowledge base. This process enables a steady improvement in output quality. KW - Additive manufacturing KW - Laser-Powder Bed Fusion KW - L-PBF KW - Binder Jetting KW - Directed Energy Deposition Y1 - 2022 U6 - http://dx.doi.org/10.1016/j.procir.2022.05.188 SN - 2212-8271 N1 - 55th CIRP Conference on Manufacturing Systems VL - 107 SP - 1539 EP - 1544 PB - Elsevier CY - Amsterdam ER - TY - CHAP A1 - Damm, Sebastian A1 - Ritz, Thomas A1 - Strauch, Jakob T1 - Adaption of archetype patterns for mobile cloud-based business apps T2 - 2011 IEEE International Conference on Pervasive Computing and Communications workshops (PerCom workshops 2011) : Seattle, Washington, USA, 21 - 25 March 2011 Y1 - 2011 SN - 978-1-61284-938-6 (Print) SN - 978-1-61284-936-2 (E-Book) U6 - http://dx.doi.org/10.1109/PERCOMW.2011.5766849 SP - 100 EP - 105 PB - IEEE Service Center CY - Piscataway, NJ ER - TY - CHAP A1 - Damm, Sebastian A1 - Rahier, Michael A1 - Ritz, Thomas A1 - Schäfer, Thomas ED - Davoli, Renzo T1 - Architecture for platform- and hardware-independent mesh networks : how to unify the channels T2 - ICSNC 2013 : The Eighth International Conference on Systems and Networks Communications ; October 27, 2013 to October 31, 2013, Venice Italy N2 - This paper will prove that mesh networks among different platforms and hardware channels can help to channel valuable information even if public telecommunication infrastructure is not available due to arbitrary reasons. Therefore, results of a simulation for mesh networks on mass events will be provided, followed by the developed architecture and an outlook on future research. The developed architecture is currently being implemented and field tested on mass events. Y1 - 2013 SN - 978-1-61208-305-6 N1 - IARIA Conference SP - 131 EP - 134 PB - Curran Associates CY - Red Hook, NY ER - TY - CHAP A1 - Dalguer, Luis A. A1 - Churilov, Sergey A1 - Butenweg, Christoph A1 - Renault, Philippe A1 - Hyun, An Jun T1 - Dynamic analysis of a reinforced concrete electrical nuclear building of SMART 2013 project subjected to earthquake excitation using ABAQUS T2 - Workshop SMART2013 : Paris, France, November 25th - 27th, 2014 Y1 - 2014 SP - 1 EP - 12 ER - TY - CHAP A1 - Dachwald, Bernd A1 - Xu, Changsheng A1 - Feldmann, Marco A1 - Plescher, Engelbert T1 - IceMole : Development of a novel subsurface ice probe and testing of the first prototype on the Morteratsch Glacier T2 - EGU General Assembly 2011 Vienna | Austria | 03 – 08 April 2011 N2 - We present the novel concept of a combined drilling and melting probe for subsurface ice research. This probe, named “IceMole”, is currently developed, built, and tested at the FH Aachen University of Applied Sciences’ Astronautical Laboratory. Here, we describe its first prototype design and report the results of its field tests on the Swiss Morteratsch glacier. Although the IceMole design is currently adapted to terrestrial glaciers and ice shields, it may later be modified for the subsurface in-situ investigation of extraterrestrial ice, e.g., on Mars, Europa, and Enceladus. If life exists on those bodies, it may be present in the ice (as life can also be found in the deep ice of Earth). Y1 - 2011 ER - TY - CHAP A1 - Dachwald, Bernd A1 - Wurm, P. T1 - Design concept and modeling of an advanced solar photon thruster T2 - Advances in the Astronautical Sciences N2 - The so-called "compound solar sail", also known as "Solar Photon Thruster" (SPT), holds the potential of providing significant performance advantages over the flat solar sail. Previous SPT design concepts, however, do not consider shadowing effects and multiple reflections of highly concentrated solar radiation that would inevitably destroy the gossamer sail film. In this paper, we propose a novel advanced SPT (ASPT) design concept that does not suffer from these oversimplifications. We present the equations that describe the thrust force acting on such a sail system and compare its performance with respect to the conventional flat solar sail. KW - solar sails Y1 - 2009 SN - 978-087703554-1 SN - 00653438 N1 - 19th AAS/AIAA Space Flight Mechanics Meeting; Savannah, GA; United States; 8 February 2009 through 12 February 2009 SP - 723 EP - 740 PB - American Astronautical Society CY - San Diego, Calif. ER - TY - CHAP A1 - Dachwald, Bernd A1 - Wurm, P. T1 - Mission analysis for an advanced solar photon thruster T2 - 60th International Astronautical Congress 2009, IAC 2009 N2 - The so-called "compound solar sail", also known as "Solar Photon Thruster" (SPT), is a solar sail design concept, for which the two basic functions of the solar sail, namely light collection and thrust direction, are uncoupled. In this paper, we introduce a novel SPT concept, termed the Advanced Solar Photon Thruster (ASPT). This model does not suffer from the simplified assumptions that have been made for the analysis of compound solar sails in previous studies. We present the equations that describe the force, which acts on the ASPT. After a detailed design analysis, the performance of the ASPT with respect to the conventional flat solar sail (FSS) is investigated for three interplanetary mission scenarios: An Earth-Venus rendezvous, where the solar sail has to spiral towards the Sun, an Earth-Mars rendezvous, where the solar sail has to spiral away from the Sun, and an Earth-NEA rendezvous (to near-Earth asteroid 1996FG3), where a large orbital eccentricity change is required. The investigated solar sails have realistic near-term characteristic accelerations between 0.1 and 0.2mm/s2. Our results show that a SPT is not superior to the flat solar sail unless very idealistic assumptions are made. KW - Interplanetary flight Y1 - 2009 SN - 978-161567908-9 N1 - 60th International Astronautical Congress 2009, IAC 2009; Daejeon; South Korea; 12 October 2009 through 16 October 2009 VL - Vol. 8 SP - 6838 EP - 6851 PB - Elsevier CY - Amsterdam ER - TY - CHAP A1 - Dachwald, Bernd A1 - Seboldt, Wolfgang A1 - Loeb, Horst W. A1 - Schartner, Karl-Heinz T1 - A comparison of SEP and NEP for a main belt asteroid sample return mission T2 - 7th International Symposium on Launcher Technologies, Barcelona, Spain, 02-05 April 2007 N2 - Innovative interplanetary deep space missions, like a main belt asteroid sample return mission, require ever larger velocity increments (∆V s) and thus ever more demanding propulsion capabilities. Providing much larger exhaust velocities than chemical high-thrust systems, electric low-thrust space-propulsion systems can significantly enhance or even enable such high-energy missions. In 1995, a European-Russian Joint Study Group (JSG) presented a study report on “Advanced Interplanetary Missions Using Nuclear-Electric Propulsion” (NEP). One of the investigated reference missions was a sample return (SR) from the main belt asteroid (19) Fortuna. The envisaged nuclear power plant, Topaz-25, however, could not be realized and also the worldwide developments in space reactor hardware stalled. In this paper, we investigate, whether such a mission is also feasible using a solar electric propulsion (SEP) system and compare our SEP results to corresponding NEP results. Y1 - 2007 SP - 1 EP - 10 ER - TY - CHAP A1 - Dachwald, Bernd A1 - Seboldt, Wolfgang A1 - Häusler, Bernd T1 - Performance requirements for near-term interplanetary solar sailcraft missions T2 - 6th International AAAF Symposium on Space Propulsion: Propulsion for Space Transportation of the XXIst Century N2 - Solar sailcraft provide a wide range of opportunities for high-energy low-cost missions. To date, most mission studies require a rather demanding performance that will not be realized by solar sailcraft of the first generation. However, even with solar sailcraft of moderate performance, scientifically relevant missions are feasible. This is demonstrated with a Near Earth Asteroid sample return mission and various planetary rendezvous missions. Y1 - 2002 N1 - 6th International AAAF Symposium on Space Propulsion: Propulsion for Space Transportation of the XXIst Century, Versailles, France, 14-16 May 2002 ER - TY - CHAP A1 - Dachwald, Bernd A1 - Mengali, Giovanni A1 - Quarta, Alessandro A A1 - Macdonald, Malcolm A1 - McInnes, Colin R T1 - Optical solar sail degradation modelling T2 - 1st International Symposium on Solar Sailing N2 - We propose a simple parametric OSSD model that describes the variation of the sail film's optical coefficients with time, depending on the sail film's environmental history, i.e., the radiation dose. The primary intention of our model is not to describe the exact behavior of specific film-coating combinations in the real space environment, but to provide a more general parametric framework for describing the general optical degradation behavior of solar sails. Y1 - 2007 N1 - 1st International Symposium on Solar Sailing 27–29 June 2007, Herrsching, Germany SP - 1 EP - 27 ER - TY - CHAP A1 - Dachwald, Bernd A1 - Kahle, Ralph A1 - Wie, Bong T1 - Solar sail Kinetic Energy Impactor (KEI) mission design tradeoffs for impacting and deflecting asteroid 99942 Apophis T2 - AIAA/AAS Astrodynamics Specialist Conference and Exhibit N2 - Near-Earth asteroid 99942 Apophis provides a typical example for the evolution of asteroid orbits that lead to Earth-impacts after a close Earth-encounter that results in a resonant return. Apophis will have a close Earth-encounter in 2029 with potential very close subsequent Earth-encounters (or even an impact) in 2036 or later, depending on whether it passes through one of several so-called gravitational keyholes during its 2029-encounter. Several pre-2029-deflection scenarios to prevent Apophis from doing this have been investigated so far. Because the keyholes are less than 1 km in size, a pre-2029 kinetic impact is clearly the best option because it requires only a small change in Apophis' orbit to nudge it out of a keyhole. A single solar sail Kinetic Energy Impactor (KEI) spacecraft that impacts Apophis from a retrograde trajectory with a very high relative velocity (75-80 km/s) during one of its perihelion passages at about 0.75 AU would be a feasible option to do this. The spacecraft consists of a 160 m x 160 m, 168 kg solar sail assembly and a 150 kg impactor. Although conventional spacecraft can also achieve the required minimum deflection of 1 km for this approx. 320 m-sized object from a prograde trajectory, our solar sail KEI concept also allows the deflection of larger objects. In this paper, we also show that, even after Apophis has flown through one of the gravitational keyholes in 2029, solar sail Kinetic Energy Impactor (KEI) spacecraft are still a feasible option to prevent Apophis from impacting the Earth, but many KEIs would be required for consecutive impacts to increase the total Earth-miss distance to a safe value. In this paper, we elaborate potential pre- and post-2029 KEI impact scenarios for a launch in 2020, and investigate tradeoffs between different mission parameters. KW - Solar Sail KW - Asteroid Deflection KW - Planetary Protection KW - Trajectory Optimization Y1 - 2006 U6 - http://dx.doi.org/10.2514/6.2006-6178 N1 - AIAA/AAS Astrodynamics Specialist Conference and Exhibit, 21 August 2006 - 24 August 2006, Keystone, Colorado(USA). SP - 1 EP - 20 ER - TY - CHAP A1 - Dachwald, Bernd A1 - Kahle, Ralph A1 - Wie, Bong T1 - Head-on impact deflection of NEAs: a case study for 99942 Apophis T2 - Planetary Defense Conference 2007 N2 - Near-Earth asteroid (NEA) 99942 Apophis provides a typical example for the evolution of asteroid orbits that lead to Earth-impacts after a close Earth-encounter that results in a resonant return. Apophis will have a close Earth-encounter in 2029 with potential very close subsequent Earth-encounters (or even an impact) in 2036 or later, depending on whether it passes through one of several less than 1 km-sized gravitational keyholes during its 2029-encounter. A pre-2029 kinetic impact is a very favorable option to nudge the asteroid out of a keyhole. The highest impact velocity and thus deflection can be achieved from a trajectory that is retrograde to Apophis orbit. With a chemical or electric propulsion system, however, many gravity assists and thus a long time is required to achieve this. We show in this paper that the solar sail might be the better propulsion system for such a mission: a solar sail Kinetic Energy Impactor (KEI) spacecraft could impact Apophis from a retrograde trajectory with a very high relative velocity (75-80 km/s) during one of its perihelion passages. The spacecraft consists of a 160 m × 160 m, 168 kg solar sail assembly and a 150 kg impactor. Although conventional spacecraft can also achieve the required minimum deflection of 1 km for this approx. 320 m-sized object from a prograde trajectory, our solar sail KEI concept also allows the deflection of larger objects. For a launch in 2020, we also show that, even after Apophis has flown through one of the gravitational keyholes in 2029, the solar sail KEI concept is still feasible to prevent Apophis from impacting the Earth, but many KEIs would be required for consecutive impacts to increase the total Earth-miss distance to a safe value Y1 - 2007 N1 - Planetary Defense Conference 2007, Wahington D.C., USA, 05-08 March 2007 SP - 1 EP - 12 ER - TY - CHAP A1 - Dachwald, Bernd A1 - Feldmann, Marco A1 - Espe, Clemens A1 - Plescher, Engelbert A1 - Konstantinidis, K. A1 - Forstner, R. T1 - Enceladus explorer - A maneuverable subsurface probe for autonomous navigation through deep ice T2 - 63rd International Astronautical Congress 2012, IAC 2012; Naples; Italy; 1 October 2012 through 5 October 2012. (Proceedings of the International Astronautical Congress, IAC ; 3) Y1 - 2012 SN - 978-1-62276-979-7 SP - 1756 EP - 1766 PB - Curran CY - Red Hook, NY ER - TY - CHAP A1 - Dachwald, Bernd A1 - Baturkin, Volodymyr A1 - Coverstone, Victoria A1 - Diedrich, Ben A1 - Garbe, Gregory A1 - Görlich, Marianne A1 - Leipold, Manfred A1 - Lura, Franz A1 - Macdonald, Malcolm A1 - McInnes, Colin A1 - Mengali, Giovanni A1 - Quarta, Alessandro A1 - Rios-Reyes, Leonel A1 - Scheeres, Daniel J. A1 - Seboldt, Wolfgang A1 - Wie, Bong T1 - Potential effects of optical solar sail degredation on trajectory design T2 - AAS/AIAA Astrodynamics Specialist N2 - The optical properties of the thin metalized polymer films that are projected for solar sails are assumed to be affected by the erosive effects of the space environment. Their degradation behavior in the real space environment, however, is to a considerable degree indefinite, because initial ground test results are controversial and relevant inspace tests have not been made so far. The standard optical solar sail models that are currently used for trajectory design do not take optical degradation into account, hence its potential effects on trajectory design have not been investigated so far. Nevertheless, optical degradation is important for high-fidelity solar sail mission design, because it decreases both the magnitude of the solar radiation pressure force acting on the sail and also the sail control authority. Therefore, we propose a simple parametric optical solar sail degradation model that describes the variation of the sail film’s optical coefficients with time, depending on the sail film’s environmental history, i.e., the radiation dose. The primary intention of our model is not to describe the exact behavior of specific film-coating combinations in the real space environment, but to provide a more general parametric framework for describing the general optical degradation behavior of solar sails. Using our model, the effects of different optical degradation behaviors on trajectory design are investigated for various exemplary missions. Y1 - 2005 N1 - 2005 AAS/AIAA Astrodynamics Specialist Conference, 7-11.08.2005. Lake Tahoe, California https://www.space-flight.org/AAS_meetings/2005_astro/2005_astro.html SP - 1 EP - 23 ER -