TY - GEN A1 - Krafft, Simone A1 - Kuka, Katrin A1 - Ulber, Roland A1 - Tippkötter, Nils T1 - Utilization of Lolium perenne varieties as a renewable substrate for single-cell proteins, lactate, and composite materials T2 - Chemie Ingenieur Technik N2 - Lolium perenne (perennial ryegrass) is aproductive and high-quality forage grass indigenous to Southern Europe, temperate Asia, and North Africa. Nowadays it is widespread and the dominant grass species on green areas in temperate climates. This abundant source of biomass is suitable for the development of bioeconomic processes because of its high cellulose and water-soluble carbohydrate content. In this work, novel breeds of the perennial ryegrass are being examined with regards to their quality parameters and biotechnological utilization options within the context of bioeconomy. Three processing operations are presented. In the first process, the perennial ryegrass is pretreated by pressing or hydrothermal extraction to derive glucosevia subsequent enzymatic hydrolysis of cellulose. A yield of up to 82 % glucose was achieved when using the hydrothermal ex-traction as pretreatment. In a second process, the ryegrass is used to produce lactic acid in high concentrations. The influence of the growth conditions and the cutting time on the carboxylic acid yield is investigated. A yield of lactic acid of above 150 g kg⁻¹ dry matter was achieved. The third process is to use Lolium perenne as a substrate in the fermentation of K. marxianus for the microbial production of single-cell proteins. The perennial ryegrass is screw-pressed and the press juice is used as medium. When supplementing the press juice with yeast media components, a biomass concentration of up to 16 g L⁻¹ could be achieved. Y1 - 2022 U6 - https://doi.org/10.1002/cite.202255306 SN - 0009-286X SN - 1522-2640 (eISSN) N1 - ProcessNet and DECHEMA‐BioTechNet Jahrestagungen 2022 together with 13th ESBES Symposium 2022, 12. - 15. September 2022, Eurogress Aachen VL - 94 IS - 9 SP - 1303 EP - 1304 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Haeger, Gerrit A1 - Bongaerts, Johannes A1 - Siegert, Petra T1 - A convenient ninhydrin assay in 96-well format for amino acid-releasing enzymes using an air-stable reagent JF - Analytical Biochemistry N2 - An improved and convenient ninhydrin assay for aminoacylase activity measurements was developed using the commercial EZ Nin™ reagent. Alternative reagents from literature were also evaluated and compared. The addition of DMSO to the reagent enhanced the solubility of Ruhemann's purple (RP). Furthermore, we found that the use of a basic, aqueous buffer enhances stability of RP. An acidic protocol for the quantification of lysine was developed by addition of glacial acetic acid. The assay allows for parallel processing in a 96-well format with measurements microtiter plates. Y1 - 2022 U6 - https://doi.org/10.1016/j.ab.2022.114819 SN - 1096-0309 IS - 624 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Falkenberg, Fabian A1 - Rahba, Jade A1 - Fischer, David A1 - Bott, Michael A1 - Bongaerts, Johannes A1 - Siegert, Petra T1 - Biochemical characterization of a novel oxidatively stable, halotolerant, and high-alkaline subtilisin from Alkalihalobacillus okhensis Kh10-101T JF - FEBS Open Bio N2 - Halophilic and halotolerant microorganisms represent a promising source of salt-tolerant enzymes suitable for various biotechnological applications where high salt concentrations would otherwise limit enzymatic activity. Considering the current growing enzyme market and the need for more efficient and new biocatalysts, the present study aimed at the characterization of a high-alkaline subtilisin from Alkalihalobacillus okhensis Kh10-101T. The protease gene was cloned and expressed in Bacillus subtilis DB104. The recombinant protease SPAO with 269 amino acids belongs to the subfamily of high-alkaline subtilisins. The biochemical characteristics of purified SPAO were analyzed in comparison with subtilisin Carlsberg, Savinase, and BPN'. SPAO, a monomer with a molecular mass of 27.1 kDa, was active over a wide range of pH 6.0–12.0 and temperature 20–80 °C, optimally at pH 9.0–9.5 and 55 °C. The protease is highly oxidatively stable to hydrogen peroxide and retained 58% of residual activity when incubated at 10 °C with 5% (v/v) H2O2 for 1 h while stimulated at 1% (v/v) H2O2. Furthermore, SPAO was very stable and active at NaCl concentrations up to 5.0 m. This study demonstrates the potential of SPAO for biotechnological applications in the future. KW - Alkalihalobacillus okhensis KW - detergent protease KW - halotolerant protease KW - high-alkaline subtilisin KW - oxidative stable protease Y1 - 2022 U6 - https://doi.org/10.1002/2211-5463.13457 SN - 2211-5463 N1 - Corresponding author: Petra Siegert VL - 12 IS - 10 SP - 1729 EP - 1746 PB - Wiley CY - Hoboken, NJ ER - TY - JOUR A1 - Falkenberg, Fabian A1 - Bott, Michael A1 - Bongaerts, Johannes A1 - Siegert, Petra T1 - Phylogenetic survey of the subtilase family and a data-mining-based search for new subtilisins from Bacillaceae JF - Frontiers in Microbiology N2 - The subtilase family (S8), a member of the clan SB of serine proteases are ubiquitous in all kingdoms of life and fulfil different physiological functions. Subtilases are divided in several groups and especially subtilisins are of interest as they are used in various industrial sectors. Therefore, we searched for new subtilisin sequences of the family Bacillaceae using a data mining approach. The obtained 1,400 sequences were phylogenetically classified in the context of the subtilase family. This required an updated comprehensive overview of the different groups within this family. To fill this gap, we conducted a phylogenetic survey of the S8 family with characterised holotypes derived from the MEROPS database. The analysis revealed the presence of eight previously uncharacterised groups and 13 subgroups within the S8 family. The sequences that emerged from the data mining with the set filter parameters were mainly assigned to the subtilisin subgroups of true subtilisins, high-alkaline subtilisins, and phylogenetically intermediate subtilisins and represent an excellent source for new subtilisin candidates. Y1 - 2022 U6 - https://doi.org/10.3389/fmicb.2022.1017978 SN - 1664-302X VL - 2022 IS - 13 PB - Frontiers CY - Lausanne ER - TY - JOUR A1 - Cheenakula, Dheeraja A1 - Hoffstadt, Kevin A1 - Krafft, Simone A1 - Reinecke, Diana A1 - Klose, Holger A1 - Kuperjans, Isabel A1 - Grömping, Markus T1 - Anaerobic digestion of algal–bacterial biomass of an Algal Turf Scrubber system JF - Biomass Conversion and Biorefinery N2 - This study investigated the anaerobic digestion of an algal–bacterial biofilm grown in artificial wastewater in an Algal Turf Scrubber (ATS). The ATS system was located in a greenhouse (50°54′19ʺN, 6°24′55ʺE, Germany) and was exposed to seasonal conditions during the experiment period. The methane (CH4) potential of untreated algal–bacterial biofilm (UAB) and thermally pretreated biofilm (PAB) using different microbial inocula was determined by anaerobic batch fermentation. Methane productivity of UAB differed significantly between microbial inocula of digested wastepaper, a mixture of manure and maize silage, anaerobic sewage sludge, and percolated green waste. UAB using sewage sludge as inoculum showed the highest methane productivity. The share of methane in biogas was dependent on inoculum. Using PAB, a strong positive impact on methane productivity was identified for the digested wastepaper (116.4%) and a mixture of manure and maize silage (107.4%) inocula. By contrast, the methane yield was significantly reduced for the digested anaerobic sewage sludge (50.6%) and percolated green waste (43.5%) inocula. To further evaluate the potential of algal–bacterial biofilm for biogas production in wastewater treatment and biogas plants in a circular bioeconomy, scale-up calculations were conducted. It was found that a 0.116 km2 ATS would be required in an average municipal wastewater treatment plant which can be viewed as problematic in terms of space consumption. However, a substantial amount of energy surplus (4.7–12.5 MWh a−1) can be gained through the addition of algal–bacterial biomass to the anaerobic digester of a municipal wastewater treatment plant. Wastewater treatment and subsequent energy production through algae show dominancy over conventional technologies. KW - Biogas KW - Methane KW - Algal Turf Scrubber KW - Algal–bacterial bioflm KW - Circular bioeconomy Y1 - 2022 U6 - https://doi.org/10.1007/s13399-022-03236-z SN - 2190-6823 N1 - Corresponding author: Dheeraja Cheenakula VL - 13 SP - 15 Seiten PB - Springer CY - Berlin ER - TY - JOUR A1 - Burger, René A1 - Lindner, Simon A1 - Rumpf, Jessica A1 - Do, Xuan Tung A1 - Diehl, Bernd W.K. A1 - Rehahn, Matthias A1 - Monakhova, Yulia A1 - Schulze, Margit T1 - Benchtop versus high field NMR: Comparable performance found for the molecular weight determination of lignin JF - Journal of Pharmaceutical and Biomedical Analysis N2 - Lignin is a promising renewable biopolymer being investigated worldwide as an environmentally benign substitute of fossil-based aromatic compounds, e.g. for the use as an excipient with antioxidant and antimicrobial properties in drug delivery or even as active compound. For its successful implementation into process streams, a quick, easy, and reliable method is needed for its molecular weight determination. Here we present a method using 1H spectra of benchtop as well as conventional NMR systems in combination with multivariate data analysis, to determine lignin’s molecular weight (Mw and Mn) and polydispersity index (PDI). A set of 36 organosolv lignin samples (from Miscanthus x giganteus, Paulownia tomentosa and Silphium perfoliatum) was used for the calibration and cross validation, and 17 samples were used as external validation set. Validation errors between 5.6% and 12.9% were achieved for all parameters on all NMR devices (43, 60, 500 and 600 MHz). Surprisingly, no significant difference in the performance of the benchtop and high-field devices was found. This facilitates the application of this method for determining lignin’s molecular weight in an industrial environment because of the low maintenance expenditure, small footprint, ruggedness, and low cost of permanent magnet benchtop NMR systems. KW - NMR KW - PLS-regression KW - Molecular weight determination KW - Chemometrics KW - Biomass Y1 - 2022 SN - 0731-7085 U6 - https://doi.org/10.1016/j.jpba.2022.114649 VL - 212 IS - Article number: 114649 PB - Elsevier CY - New York, NY ER - TY - GEN A1 - Braun, Lena A1 - Krafft, Simone A1 - Tippkötter, Nils T1 - Combined supercritical carbon dioxide extraction and chromatography of the algae fatty linoleic and linolenic acid T2 - Chemie Ingenieur Technik N2 - A method for the integrated extraction and separation of fatty acids from algae using supercritical CO2 is presented. Desmodesmus obliquus and Chlorella sorokiniana were used as algae. First, a method for chromatographic separation of fatty acids of different degrees of saturation was established and optimized. Then, an integrated method for supercritical extraction was developed for both algal species. It was also verified whether prior cell disruption was beneficial for extraction. In developing the method for chromatographic separation, statistical experimental design was used to determine the optimal parameter settings. The methanol content in the mobile phase proved to be the most important parameter for successful separation of the three unsaturated fatty acids oleic acid, linoleic acid, and linolenic acid. Supercritical extraction with dried algae showed that about four times more fatty acids can be extracted from C. sorokiniana relative to the dry mass used. Y1 - 2022 U6 - https://doi.org/10.1002/cite.202255308 SN - 0009-286X SN - 1522-2640 (eISSN) N1 - ProcessNet and DECHEMA‐BioTechNet Jahrestagungen 2022 together with 13th ESBES Symposium 2022, 12. - 15. September 2022, Eurogress Aachen VL - 94 IS - 9 SP - 1304 PB - Wiley-VCH CY - Weinheim ER -