TY - JOUR A1 - Pfaff, Raphael T1 - Braking distance prediction for vehicle consist in low-speed on-sight operation: a Monte Carlo approach JF - Railway Engineering Science N2 - The first and last mile of a railway journey, in both freight and transit applications, constitutes a high effort and is either non-productive (e.g. in the case of depot operations) or highly inefficient (e.g. in industrial railways). These parts are typically managed on-sight, i.e. with no signalling and train protection systems ensuring the freedom of movement. This is possible due to the rather short braking distances of individual vehicles and shunting consists. The present article analyses the braking behaviour of such shunting units. For this purpose, a dedicated model is developed. It is calibrated on published results of brake tests and validated against a high-definition model for low-speed applications. Based on this model, multiple simulations are executed to obtain a Monte Carlo simulation of the resulting braking distances. Based on the distribution properties and established safety levels, the risk of exceeding certain braking distances is evaluated and maximum braking distances are derived. Together with certain parameters of the system, these can serve in the design and safety assessment of driver assistance systems and automation of these processes. KW - Freight rail KW - Shunting KW - Braking curves KW - Brake set-up KW - Driver assistance system Y1 - 2023 U6 - http://dx.doi.org/10.1007/s40534-023-00303-7 SN - 2662-4753 (eISSN) SN - 2662-4745 (Print) VL - 31 IS - 2 SP - 135 EP - 144 PB - SpringerOpen ER - TY - JOUR A1 - Serror, Martin A1 - Hack, Sacha A1 - Henze, Martin A1 - Schuba, Marko A1 - Wehrle, Klaus T1 - Challenges and Opportunities in Securing the Industrial Internet of Things JF - IEEE Transactions on Industrial Informatics Y1 - 2021 U6 - http://dx.doi.org/10.1109/TII.2020.3023507 SN - 1941-0050 VL - 17 IS - 5 SP - 2985 EP - 2996 PB - IEEE CY - New York ER - TY - CHAP A1 - Dey, Thomas A1 - Elsen, Ingo A1 - Ferrein, Alexander A1 - Frauenrath, Tobias A1 - Reke, Michael A1 - Schiffer, Stefan ED - Makedon, Fillia T1 - CO2 Meter: a do-it-yourself carbon dioxide measuring device for the classroom T2 - PETRA 2021: The 14th PErvasive Technologies Related to Assistive Environments Conference N2 - In this paper we report on CO2 Meter, a do-it-yourself carbon dioxide measuring device for the classroom. Part of the current measures for dealing with the SARS-CoV-2 pandemic is proper ventilation in indoor settings. This is especially important in schools with students coming back to the classroom even with high incidents rates. Static ventilation patterns do not consider the individual situation for a particular class. Influencing factors like the type of activity, the physical structure or the room occupancy are not incorporated. Also, existing devices are rather expensive and often provide only limited information and only locally without any networking. This leaves the potential of analysing the situation across different settings untapped. Carbon dioxide level can be used as an indicator of air quality, in general, and of aerosol load in particular. Since, according to the latest findings, SARS-CoV-2 can be transmitted primarily in the form of aerosols, carbon dioxide may be used as a proxy for the risk of a virus infection. Hence, schools could improve the indoor air quality and potentially reduce the infection risk if they actually had measuring devices available in the classroom. Our device supports schools in ventilation and it allows for collecting data over the Internet to enable a detailed data analysis and model generation. First deployments in schools at different levels were received very positively. A pilot installation with a larger data collection and analysis is underway. KW - embedded hardware KW - sensor networks KW - information systems KW - education KW - do-it-yourself Y1 - 2021 SN - 9781450387927 U6 - http://dx.doi.org/10.1145/3453892.3462697 N1 - PETRA '21: The 14th PErvasive Technologies Related to Assistive Environments Conference Corfu Greece 29 June 2021- 2 July 2021 SP - 292 EP - 299 PB - Association for Computing Machinery CY - New York ER - TY - JOUR A1 - Rupp, Matthias A1 - Schulze, Sven A1 - Kuperjans, Isabel T1 - Comparative life cycle analysis of conventional and hybrid heavy-duty trucks JF - World electric vehicle journal N2 - Heavy-duty trucks are one of the main contributors to greenhouse gas emissions in German traffic. Drivetrain electrification is an option to reduce tailpipe emissions by increasing energy conversion efficiency. To evaluate the vehicle’s environmental impacts, it is necessary to consider the entire life cycle. In addition to the daily use, it is also necessary to include the impact of production and disposal. This study presents the comparative life cycle analysis of a parallel hybrid and a conventional heavy-duty truck in long-haul operation. Assuming a uniform vehicle glider, only the differing parts of both drivetrains are taken into account to calculate the environmental burdens of the production. The use phase is modeled by a backward simulation in MATLAB/Simulink considering a characteristic driving cycle. A break-even analysis is conducted to show at what mileage the larger CO2eq emissions due to the production of the electric drivetrain are compensated. The effect of parameter variation on the break-even mileage is investigated by a sensitivity analysis. The results of this analysis show the difference in CO2eq/t km is negative, indicating that the hybrid vehicle releases 4.34 g CO2eq/t km over a lifetime fewer emissions compared to the diesel truck. The break-even analysis also emphasizes the advantages of the electrified drivetrain, compensating the larger emissions generated during production after already a distance of 15,800 km (approx. 1.5 months of operation time). The intersection coordinates, distance, and CO2eq, strongly depend on fuel, emissions for battery production and the driving profile, which lead to nearly all parameter variations showing an increase in break-even distance. Y1 - 2018 U6 - http://dx.doi.org/10.3390/wevj9020033 SN - 2032-6653 VL - 9 IS - 2 SP - Article No. 33 PB - MDPI CY - Basel ER - TY - CHAP A1 - Kemper, Hans A1 - Hellenbroich, Gereon A1 - Esch, Thomas T1 - Concept of an innovative passenger-car hybrid drive for European driving conditions T2 - Hybrid vehicles and energy management : 6th symposium ; 18th and 19th February 2009, Stadthalle Braunschweig N2 - The downsizing of spark ignition engines in conjunction with turbocharging is considered to be a promising method for reducing CO₂ emissions. Using this concept, FEV has developed a new, highly efficient drivetrain to demonstrate fuel consumption reduction and drivability in a vehicle based on the Ford Focus ST. The newly designed 1.8L turbocharged gasoline engine incorporates infinitely variable intake and outlet control timing and direct fuel injection utilizing piezo injectors centrally located. In addition, this engine uses a prototype FEV engine control system, with software that was developed and adapted entirely by FEV. The vehicle features a 160 kW engine with a maximum mean effective pressure of 22.4 bar and 34 % savings in simulated fuel consumption. During the first stage, a new electrohydraulically actuated hybrid transmission with seven forward gears and one reverse gear and a single dry starting clutch will be integrated. The electric motor of the hybrid is directly connected to the gear set of the transmission. Utilizing the special gear set layout, the electric motor can provide boost during a change of gears, so that there is no interruption in traction. Therefore, the transmission system combines the advantages of a double clutch controlled gear change (gear change without an interruption in traction) with the efficient, cost-effective design of an automated manual transmission system. Additionally, the transmission provides a purely electric drive system and the operation of an air-conditioning compressor during the engine stop phases. One other alternative is through the use of CAI (Controlled Auto Ignition), which incorporates a process developed by FEV for controlled compression ignition. Y1 - 2009 SN - 978-3-937655-20-8 SP - 264 EP - 287 PB - Gesamtzentrum für Verkehr (GZVB) CY - Braunschweig ER - TY - CHAP A1 - Schulte, Jonas A1 - Schwager, Christian A1 - Frantz, Cathy A1 - Schloms, Felix A1 - Teixeira Boura, Cristiano José A1 - Herrmann, Ulf T1 - Control concept for a molten salt receiver in star design: Development, optimization and testing with cloud passage scenarios T2 - SolarPACES conference proceedings N2 - A promising approach to reduce the system costs of molten salt solar receivers is to enable the irradiation of the absorber tubes on both sides. The star design is an innovative receiver design, pursuing this approach. The unconventional design leads to new challenges in controlling the system. This paper presents a control concept for a molten salt receiver system in star design. The control parameters are optimized in a defined test cycle by minimizing a cost function. The control concept is tested in realistic cloud passage scenarios based on real weather data. During these tests, the control system showed no sign of unstable behavior, but to perform sufficiently in every scenario further research and development like integrating Model Predictive Controls (MPCs) need to be done. The presented concept is a starting point to do so. KW - Molten salt receiver KW - Star design KW - Control optimization KW - Cloud passages Y1 - 2023 U6 - http://dx.doi.org/10.52825/solarpaces.v1i.693 SN - 2751-9899 (online) N1 - 28th International Conference on Concentrating Solar Power and Chemical Energy Systems, 27-30 September, Albuquerque, NM, USA IS - Vol. 1 PB - TIB Open Publishing CY - Hannover ER - TY - CHAP A1 - Schopen, Oliver A1 - Kemper, Hans A1 - Esch, Thomas T1 - Development of a comparison methodology and evaluation matrix for electrically driven compressors in ICE and FC T2 - Proceedings of the 1st UNITED – Southeast Asia Automotive Interest Group (SAIG) International Conference N2 - In addition to electromobility and alternative drive systems, a focus is set on electrically driven compressors (EDC), with a high potential for increasing the efficiency of internal combustion engines (ICE) and fuel cells [01]. The primary objective is to increase the ICE torque, provided independently of the ICE speed by compressing the intake air and consequently the ICE filling level supported by the compressor. For operation independent from the ICE speed, the EDC compressor is decoupled from the turbine by using an electric compressor motor (CM) instead of the turbine. ICE performances can be increased by the use of EDC where individual compressor parameters are adapted to the respective application area [02] [03]. This task contains great challenges, increased by demands with regard to pollutant reduction while maintaining constant performance and reduced fuel consumption. The FH-Aachen is equipped with an EDC test bench which enables EDC-investigations in various configurations and operating modes. Characteristic properties of different compressors can be determined, which build the basis for a comparison methodology. Subject of this project is the development of a comparison methodology for EDC with an associated evaluation method and a defined overall evaluation method. For the application of this comparison methodology, corresponding series of measurements are carried out on the EDC test bench using an appropriate test device. KW - electro mobility KW - fuel cell KW - internal combustion engine KW - electrically driven compressors Y1 - 2021 SN - 978-3-902103-94-9 N1 - 1st UNITED-SAIG International Conference, 21-22 APR 2021, Chulalongkorn University, Thailand SP - 45 EP - 46 PB - FH Joanneum CY - Graz ER - TY - CHAP A1 - Caminos, Ricardo Alexander Chico A1 - Schmitz, Pascal A1 - Atti, Vikrama A1 - Mahdi, Zahra A1 - Teixeira Boura, Cristiano José A1 - Sattler, Johannes Christoph A1 - Herrmann, Ulf A1 - Hilger, Patrick A1 - Dieckmann, Simon T1 - Development of a micro heliostat and optical qualification assessment with a 3D laser scanning method T2 - SOLARPACES 2020 N2 - The Solar-Institut Jülich (SIJ) and the companies Hilger GmbH and Heliokon GmbH from Germany have developed a small-scale cost-effective heliostat, called “micro heliostat”. Micro heliostats can be deployed in small-scale concentrated solar power (CSP) plants to concentrate the sun's radiation for electricity generation, space or domestic water heating or industrial process heat. In contrast to conventional heliostats, the special feature of a micro heliostat is that it consists of dozens of parallel-moving, interconnected, rotatable mirror facets. The mirror facets array is fixed inside a box-shaped module and is protected from weathering and wind forces by a transparent glass cover. The choice of the building materials for the box, tracking mechanism and mirrors is largely dependent on the selected production process and the intended application of the micro heliostat. Special attention was paid to the material of the tracking mechanism as this has a direct influence on the accuracy of the micro heliostat. The choice of materials for the mirror support structure and the tracking mechanism is made in favor of plastic molded parts. A qualification assessment method has been developed by the SIJ in which a 3D laser scanner is used in combination with a coordinate measuring machine (CMM). For the validation of this assessment method, a single mirror facet was scanned and the slope deviation was computed. KW - Concentrated solar power KW - Electricity generation KW - Measuring instruments KW - Heliostats KW - Global change Y1 - 2022 SN - 978-0-7354-4195-8 U6 - http://dx.doi.org/10.1063/5.0086262 SN - 1551-7616 (online) SN - 0094-243X (print) N1 - 26th International Conference on Concentrating Solar Power and Chemical Energy Systems 28 September–2 October 2020 Freiburg, Germany IS - 2445 / 1 PB - AIP conference proceedings / American Institute of Physics CY - Melville, NY ER - TY - CHAP A1 - Grund, Raphael M. A1 - Altherr, Lena ED - Reiff-Stephan, Jörg ED - Jäkel, Jens ED - Schwarz, André T1 - Development of an open source energy disaggregation tool for the home automation platform Home Assistant T2 - Tagungsband AALE 2023 : mit Automatisierung gegen den Klimawandel N2 - In order to reduce energy consumption of homes, it is important to make transparent which devices consume how much energy. However, power consumption is often only monitored aggregated at the house energy meter. Disaggregating this power consumption into the contributions of individual devices can be achieved using Machine Learning. Our work aims at making state of the art disaggregation algorithms accessibe for users of the open source home automation platform Home Assistant. KW - Home Automation Platform KW - Home Assistant KW - Open Source KW - Machine Learning KW - Energy Disaggregation Y1 - 2023 SN - 978-3-910103-01-6 U6 - http://dx.doi.org/10.33968/2023.02 N1 - 19. AALE-Konferenz. Luxemburg, 08.03.-10.03.2023. BTS Connected Buildings & Cities Luxemburg (Tagungsband unter https://doi.org/10.33968/2023.01) SP - 11 EP - 20 PB - le-tex publishing services GmbH CY - Leipzig ER - TY - CHAP A1 - Sattler, Johannes Christoph A1 - Schneider, Iesse Peer A1 - Angele, Florian A1 - Atti, Vikrama A1 - Teixeira Boura, Cristiano José A1 - Herrmann, Ulf T1 - Development of heliostat field calibration methods: Theory and experimental test results T2 - SolarPACES conference proceedings N2 - In this work, three patent pending calibration methods for heliostat fields of central receiver systems (CRS) developed by the Solar-Institut Jülich (SIJ) of the FH Aachen University of Applied Sciences are presented. The calibration methods can either operate in a combined mode or in stand-alone mode. The first calibration method, method A, foresees that a camera matrix is placed into the receiver plane where it is subjected to concentrated solar irradiance during a measurement process. The second calibration method, method B, uses an unmanned aerial vehicle (UAV) such as a quadrocopter to automatically fly into the reflected solar irradiance cross-section of one or more heliostats (two variants of method B were tested). The third calibration method, method C, foresees a stereo central camera or multiple stereo cameras installed e.g. on the solar tower whereby the orientations of the heliostats are calculated from the location detection of spherical red markers attached to the heliostats. The most accurate method is method A which has a mean accuracy of 0.17 mrad. The mean accuracy of method B variant 1 is 1.36 mrad and of variant 2 is 1.73 mrad. Method C has a mean accuracy of 15.07 mrad. For method B there is great potential regarding improving the measurement accuracy. For method C the collected data was not sufficient for determining whether or not there is potential for improving the accuracy. KW - Heliostat Field Calibration KW - Unmanned aerial vehicle KW - UAV KW - Quadrocopter KW - Camera system Y1 - 2024 U6 - http://dx.doi.org/10.52825/solarpaces.v1i.678 SN - 2751-9899 (online) N1 - 28th International Conference on Concentrating Solar Power and Chemical Energy Systems, 27-30 September, Albuquerque, NM, USA IS - Vol. 1 PB - TIB Open Publishing CY - Hannover ER - TY - CHAP A1 - Neumann, Hannah A1 - Adam, Mario A1 - Backes, Klaus A1 - Börner, Martin A1 - Clees, Tanja A1 - Doetsch, Christian A1 - Glaeser, Susanne A1 - Herrmann, Ulf A1 - May, Johanna A1 - Rosenthal, Florian A1 - Sauer, Dirk Uwe A1 - Stadler, Ingo T1 - Development of open educational resources for renewable energy and the energy transition process T2 - ISES SWC 2021 N2 - The dissemination of knowledge about renewable energies is understood as a social task with the highest topicality. The transfer of teaching content on renewable energies into digital open educational resources offers the opportunity to significantly accelerate the implementation of the energy transition. Thus, in the here presented project six German universities create open educational resources for the energy transition. These materials are available to the public on the internet under a free license. So far there has been no publicly accessible, editable media that cover entire learning units about renewable energies extensively and in high technical quality. Thus, in this project, the content that remains up-to-date for a longer period is appropriately prepared in terms of media didactics. The materials enable lecturers to provide students with in-depth training about technologies for the energy transition. In a particular way, the created material is also suitable for making the general public knowledgeable about the energy transition with scientifically based material. KW - energy transition KW - renewable energies KW - open educational resources KW - dissemination KW - digitalization Y1 - 2021 U6 - http://dx.doi.org/10.18086/swc.2021.47.03 N1 - ISES Solar World Congress, virtual conference 25-29 October 2021 PB - International Solar Energy Society CY - Freiburg ER - TY - CHAP A1 - Tamaldin, Noreffendy A1 - Mansor, Muhd Rizuan A1 - Mat Yamin, Ahmad Kamal A1 - Bin Abdollah, Mohd Fazli A1 - Esch, Thomas A1 - Tonoli, Andrea A1 - Reisinger, Karl Heinz A1 - Sprenger, Hanna A1 - Razuli, Hisham ED - Bin Abdollah, Mohd Fadzli ED - Amiruddin, Hilmi ED - Singh, Amrik Singh Phuman ED - Munir, Fudhail Abdul ED - Ibrahim, Asriana T1 - Development of UTeM United Future Fuel Design Training Center Under Erasmus+ United Program T2 - Proceedings of the 7th International Conference and Exhibition on Sustainable Energy and Advanced Materials (ICE-SEAM 2021), Melaka, Malaysia N2 - The industrial revolution IR4.0 era have driven many states of the art technologies to be introduced especially in the automotive industry. The rapid development of automotive industries in Europe have created wide industry gap between European Union (EU) and developing countries such as in South-East Asia (SEA). Indulging this situation, FH Joanneum, Austria together with European partners from FH Aachen, Germany and Politecnico Di Torino, Italy is taking initiative to close the gap utilizing the Erasmus+ United grant from EU. A consortium was founded to engage with automotive technology transfer using the European ramework to Malaysian, Indonesian and Thailand Higher Education Institutions (HEI) as well as automotive industries. This could be achieved by establishing Engineering Knowledge Transfer Unit (EKTU) in respective SEA institutions guided by the industry partners in their respective countries. This EKTU could offer updated, innovative, and high-quality training courses to increase graduate’s employability in higher education institutions and strengthen relations between HEI and the wider economic and social environment by addressing Universityindustry cooperation which is the regional priority for Asia. It is expected that, the Capacity Building Initiative would improve the quality of higher education and enhancing its relevance for the labor market and society in the SEA partners. The outcome of this project would greatly benefit the partners in strong and complementary partnership targeting the automotive industry and enhanced larger scale international cooperation between the European and SEA partners. It would also prepare the SEA HEI in sustainable partnership with Automotive industry in the region as a mean of income generation in the future. KW - Erasmus+ United KW - technology transfer KW - UTeM Engineering Knowledge Transfer Unit KW - Malaysian automotive industry Y1 - 2022 SN - 978-981-19-3178-9 SN - 978-981-19-3179-6 (E-Book) U6 - http://dx.doi.org/10.1007/978-981-19-3179-6_50 SN - 2195-4356 N1 - The 7th International Conference and Exhibition on Sustainable Energy and Advanced Material (ICE-SEAM 2021) was organized by Universiti Teknikal Malaysia Melaka (UTeM), Malaysia, in association with the Universitas Sebelas Maret (UNS), Indonesia, on 23 November 2021. SP - 274 EP - 278 PB - Springer Nature CY - Singapore ER - TY - CHAP A1 - Neth, Jannik A1 - Schuba, Marko A1 - Brodkorb, Karsten A1 - Neugebauer, Georg A1 - Höner, Tim A1 - Hack, Sacha T1 - Digital forensics triage app for android T2 - ARES '23: Proceedings of the 18th International Conference on Availability, Reliability and Security N2 - Digital forensics of smartphones is of utmost importance in many criminal cases. As modern smartphones store chats, photos, videos etc. that can be relevant for investigations and as they can have storage capacities of hundreds of gigabytes, they are a primary target for forensic investigators. However, it is exactly this large amount of data that is causing problems: extracting and examining the data from multiple phones seized in the context of a case is taking more and more time. This bears the risk of wasting a lot of time with irrelevant phones while there is not enough time left to analyze a phone which is worth examination. Forensic triage can help in this case: Such a triage is a preselection step based on a subset of data and is performed before fully extracting all the data from the smartphone. Triage can accelerate subsequent investigations and is especially useful in cases where time is essential. The aim of this paper is to determine which and how much data from an Android smartphone can be made directly accessible to the forensic investigator – without tedious investigations. For this purpose, an app has been developed that can be used with extremely limited storage of data in the handset and which outputs the extracted data immediately to the forensic workstation in a human- and machine-readable format. KW - Android KW - Digital triage KW - Triage-app Y1 - 2023 SN - 9798400707728 U6 - http://dx.doi.org/10.1145/3600160.3605017 N1 - ARES 2023: The 18th International Conference on Availability, Reliability and Security. August 29 - September 1, 2023. Benevento, Italy. PB - ACM ER - TY - CHAP A1 - Sattler, Johannes Christoph A1 - Atti, Vikrama A1 - Alexopoulos, Spiros A1 - Teixeira Boura, Cristiano José A1 - Herrmann, Ulf A1 - Dutta, Siddharth A1 - Kioutsioukis, Ioannis T1 - DNI forecast tool for the smart operation of a parabolic trough collector system with concrete thermal energy storage: Theory, results and outlook T2 - SolarPACES conference proceedings N2 - This work presents a basic forecast tool for predicting direct normal irradiance (DNI) in hourly resolution, which the Solar-Institut Jülich (SIJ) is developing within a research project. The DNI forecast data shall be used for a parabolic trough collector (PTC) system with a concrete thermal energy storage (C-TES) located at the company KEAN Soft Drinks Ltd in Limassol, Cyprus. On a daily basis, 24-hour DNI prediction data in hourly resolution shall be automatically produced using free or very low-cost weather forecast data as input. The purpose of the DNI forecast tool is to automatically transfer the DNI forecast data on a daily basis to a main control unit (MCU). The MCU automatically makes a smart decision on the operation mode of the PTC system such as steam production mode and/or C-TES charging mode. The DNI forecast tool was evaluated using historical data of measured DNI from an on-site weather station, which was compared to the DNI forecast data. The DNI forecast tool was tested using data from 56 days between January and March 2022, which included days with a strong variation in DNI due to cloud passages. For the evaluation of the DNI forecast reliability, three categories were created and the forecast data was sorted accordingly. The result was that the DNI forecast tool has a reliability of 71.4 % based on the tested days. The result fulfils SIJ’s aim to achieve a reliability of around 70 %, but SIJ aims to still improve the DNI forecast quality. KW - Direct normal irradiance forecast KW - DNI forecast KW - Parabolic trough collector KW - PTC KW - Thermal Energy Storage Y1 - 2024 U6 - http://dx.doi.org/10.52825/solarpaces.v1i.731 SN - 2751-9899 (online) N1 - 28th International Conference on Concentrating Solar Power and Chemical Energy Systems, 27-30 September, Albuquerque, NM, USA IS - VOL. 1 PB - TIB Open Publishing CY - Hannover ER - TY - CHAP A1 - Götten, Falk A1 - Finger, Felix A1 - Braun, Carsten A1 - Havermann, Marc A1 - Bil, C. A1 - Gomez, F. T1 - Empirical Correlations for Geometry Build-Up of Fixed Wing Unmanned Air Vehicles T2 - APISAT 2018: The Proceedings of the 2018 Asia-Pacific International Symposium on Aerospace Technology (APISAT 2018) N2 - The results of a statistical investigation of 42 fixed-wing, small to medium sized (20 kg−1000 kg) reconnaissance unmanned air vehicles (UAVs) are presented. Regression analyses are used to identify correlations of the most relevant geometry dimensions with the UAV’s maximum take-off mass. The findings allow an empirical based geometry-build up for a complete unmanned aircraft by referring to its take-off mass only. This provides a bridge between very early design stages (initial sizing) and the later determination of shapes and dimensions. The correlations might be integrated into a UAV sizing environment and allow designers to implement more sophisticated drag and weight estimation methods in this process. Additional information on correlation factors for a rough drag estimation methodology indicate how this technique can significantly enhance the accuracy of early design iterations. KW - Unmanned Air Vehicle KW - Geometry KW - Correlations KW - Statistics KW - Drag Y1 - 2019 SN - 978-981-13-3305-7 U6 - http://dx.doi.org/10.1007/978-981-13-3305-7_109 N1 - APISAT 2018 - Asia-Pacific International Symposium on Aerospace Technology. 16-18 October 2018. Chengdu, China. Lecture Notes in Electrical Engineering (LNEE, volume 459) SP - 1365 EP - 1381 PB - Springer CY - Singapore ER - TY - CHAP A1 - Lahrs, Lennart A1 - Krisam, Pierre A1 - Herrmann, Ulf T1 - Envisioning a collaborative energy system planning platform for the energy transition at the district level T2 - The 36th International Conference on Efficiency, Cost, Optimization, Simulation and Environmental Impact of Energy Systems N2 - Residential and commercial buildings account for more than one-third of global energy-related greenhouse gas emissions. Integrated multi-energy systems at the district level are a promising way to reduce greenhouse gas emissions by exploiting economies of scale and synergies between energy sources. Planning district energy systems comes with many challenges in an ever-changing environment. Computational modelling established itself as the state-of-the-art method for district energy system planning. Unfortunately, it is still cumbersome to combine standalone models to generate insights that surpass their original purpose. Ideally, planning processes could be solved by using modular tools that easily incorporate the variety of competing and complementing computational models. Our contribution is a vision for a collaborative development and application platform for multi-energy system planning tools at the district level. We present challenges of district energy system planning identified in the literature and evaluate whether this platform can help to overcome these challenges. Further, we propose a toolkit that represents the core technical elements of the platform. Lastly, we discuss community management and its relevance for the success of projects with collaboration and knowledge sharing at their core. KW - Energy system planning KW - District energy planning platform KW - District data model KW - Renewable energy integration Y1 - 2023 U6 - http://dx.doi.org/10.52202/069564-0284 N1 - 25-30 JUNE, 2023, Las Palmas de Gran Canaria, Spain SP - 3163 EP - 3170 PB - Procedings of ECOS 2023 ER - TY - CHAP A1 - Tamaldin, Noreffendy A1 - Esch, Thomas A1 - Tonoli, Andrea A1 - Reisinger, Karl Heinz A1 - Sprenger, Hanna A1 - Razuli, Hisham T1 - ERASMUS+ United CBHE Automotive International Collaboration from European to South East Asia T2 - Proceedings of the 2nd African International Conference on Industrial Engineering and Operations Management N2 - The industrial revolution especially in the IR4.0 era have driven many states of the art technologies to be introduced. The automotive industry as well as many other key industries have also been greatly influenced. The rapid development of automotive industries in Europe have created wide industry gap between European Union (EU) and developing countries such as in South East Asia (SEA). Indulging this situation, FH JOANNEUM, Austria together with European partners from FH Aachen, Germany and Politecnico di Torino, Italy are taking initiative to close down the gap utilizing the Erasmus+ United Capacity Building in Higher Education grant from EU. A consortium was founded to engage with automotive technology transfer using the European framework to Malaysian, Indonesian and Thailand Higher Education Institutions (HEI) as well as automotive industries in respective countries. This could be achieved by establishing Engineering Knowledge Transfer Unit (EKTU) in respective SEA institutions guided by the industry partners in their respective countries. This EKTU could offer updated, innovative and high-quality training courses to increase graduate’s employability in higher education institutions and strengthen relations between HEI and the wider economic and social environment by addressing University-industry cooperation which is the regional priority for Asia. It is expected that, the Capacity Building Initiative would improve the quality of higher education and enhancing its relevance for the labor market and society in the SEA partners. The outcome of this project would greatly benefit the partners in strong and complementary partnership targeting the automotive industry and enhanced larger scale international cooperation between the European and SEA partners. It would also prepare the SEA HEI in sustainable partnership with Automotive industry in the region as a mean of income generation in the future. KW - European Framework and South East Asia KW - Technology Transfer KW - Capacity Building Higher Education KW - Malaysian Automotive Industry Y1 - 2020 SN - 978-1-7923-6123-4 SN - 2169-8767 N1 - 2nd African International Conference on Industrial Engineering and Operations Management; Harare, Zimbabwe, December 7-10, 2020 SP - 2970 EP - 2972 PB - IEOM Society International CY - Southfield ER - TY - CHAP A1 - Thoma, Andreas A1 - Fisher, Alex A1 - Bertrand, Olivier A1 - Braun, Carsten ED - Vouloutsi, Vasiliki ED - Mura, Anna ED - Tauber, Falk ED - Speck, Thomas ED - Prescott, Tony J. ED - Verschure, Paul F. M. J. T1 - Evaluation of possible flight strategies for close object evasion from bumblebee experiments T2 - Living Machines 2020: Biomimetic and Biohybrid Systems KW - Obstacle avoidance KW - Bumblebees KW - Flight control KW - UAV KW - MAV Y1 - 2020 SN - 978-3-030-64312-6 U6 - http://dx.doi.org/10.1007/978-3-030-64313-3_34 N1 - 9th International Conference, Living Machines 2020, Freiburg, Germany, July 28–30, 2020, Proceedings SP - 354 EP - 365 PB - Springer CY - Cham ER - TY - JOUR A1 - Neu, Eugen A1 - Janser, Frank A1 - Khatibi, Akbar A. A1 - Orifici, Adrian C. T1 - Fully Automated Operational Modal Analysis using multi-stage clustering JF - Mechanical Systems and Signal Processing Y1 - 2017 U6 - http://dx.doi.org/10.1016/j.ymssp.2016.07.031 SN - 0888-3270 VL - Vol. 84, Part A SP - 308 EP - 323 PB - Elsevier CY - Amsterdam ER - TY - CHAP A1 - Christian, Esser A1 - Montag, Tim A1 - Schuba, Marko A1 - Allhof, Manuel T1 - Future critical infrastructure and security - cyberattacks on charging stations T2 - 31st International Electric Vehicle Symposium & Exhibition and International Electric Vehicle Technology Conference (EVS31 & EVTeC 2018) Y1 - 2018 SN - 978-1-5108-9157-9 SP - 665 EP - 671 PB - Society of Automotive Engineers of Japan (JSAE) CY - Tokyo ER -