TY - CHAP A1 - Achenbach, Timm A1 - Göttsche, Joachim A1 - Kaufhold, O. A1 - Hoffschmidt, Bernhard T1 - Development of an edge module for open volumetric receiver for the use of the radiation at the receiver boundary region T2 - SolarPACES 2011 : concentrating solar power and chemical energy systems : 20 - 23 September, 2011, Granada, Spain Y1 - 2011 CY - Granada ER - TY - CHAP A1 - Hoffschmidt, Bernhard A1 - Schwarzer, Klemens A1 - Späte, Frank A1 - Kötter, Jens A1 - Ebert, Miriam A1 - Sierck, Olaf T1 - Development of a small modular parabolic trough collector T2 - 13th International Symposium Concentrated Solar Power and Chemical Energy Technologies : SolarPaces : June 20 - 23, 2006, Seville, Spain Y1 - 2006 SN - 8478345191 PB - SolarPaces CY - [o.O.] ER - TY - CHAP A1 - Caminos, Ricardo Alexander Chico A1 - Schmitz, Pascal A1 - Atti, Vikrama A1 - Mahdi, Zahra A1 - Teixeira Boura, Cristiano José A1 - Sattler, Johannes Christoph A1 - Herrmann, Ulf A1 - Hilger, Patrick A1 - Dieckmann, Simon T1 - Development of a micro heliostat and optical qualification assessment with a 3D laser scanning method T2 - SOLARPACES 2020 N2 - The Solar-Institut Jülich (SIJ) and the companies Hilger GmbH and Heliokon GmbH from Germany have developed a small-scale cost-effective heliostat, called “micro heliostat”. Micro heliostats can be deployed in small-scale concentrated solar power (CSP) plants to concentrate the sun's radiation for electricity generation, space or domestic water heating or industrial process heat. In contrast to conventional heliostats, the special feature of a micro heliostat is that it consists of dozens of parallel-moving, interconnected, rotatable mirror facets. The mirror facets array is fixed inside a box-shaped module and is protected from weathering and wind forces by a transparent glass cover. The choice of the building materials for the box, tracking mechanism and mirrors is largely dependent on the selected production process and the intended application of the micro heliostat. Special attention was paid to the material of the tracking mechanism as this has a direct influence on the accuracy of the micro heliostat. The choice of materials for the mirror support structure and the tracking mechanism is made in favor of plastic molded parts. A qualification assessment method has been developed by the SIJ in which a 3D laser scanner is used in combination with a coordinate measuring machine (CMM). For the validation of this assessment method, a single mirror facet was scanned and the slope deviation was computed. KW - Concentrated solar power KW - Electricity generation KW - Measuring instruments KW - Heliostats KW - Global change Y1 - 2022 SN - 978-0-7354-4195-8 U6 - https://doi.org/10.1063/5.0086262 SN - 1551-7616 (online) SN - 0094-243X (print) N1 - SOLARPACES 2020: 26th International Conference on Concentrating Solar Power and Chemical Energy Systems, 28 September–2 October 2020, Freiburg, Germany IS - 2445 / 1 PB - AIP conference proceedings / American Institute of Physics CY - Melville, NY ER - TY - CHAP A1 - Buck, R. A1 - Wurmhöringer, K. A1 - Lehle, R. A1 - Pfahl, A. A1 - Göttsche, Joachim A1 - Meyr, T. T1 - Development of a 30m2 heliostat with hydraulic drive T2 - SolarPACES 2010 : the CSP Conference: electricity, fuels and clean water from concentrated solar energy ; 21 to 24 September 2010, Perpignan, France Y1 - 2010 SP - 74 EP - 75 PB - Soc. OSC CY - Saint Maur ER - TY - CHAP A1 - Anthrakidis, Anette A1 - Herrmann, Ulf A1 - Schorn, Christian A1 - Schwarzer, Klemens A1 - Wedding, Philipp A1 - Weis, Fabian T1 - Development and Testing of a Novel Method for the Determination of the Efficiency of Concentrating Solar Thermal Collectors T2 - Conference Proceedings Solar World Congress 2015, Daegu, Korea, 08 – 12 November 2015 Y1 - 2015 ER - TY - CHAP A1 - Schwarzer, Klemens T1 - Desalination systems with renewable energies T2 - DME Seminar Desalination and Renewable Energies : June 19 and 20 2008, Solar Institut Jülich / Deutsche Meerwasserentsalzung e.V. Y1 - 2008 SN - 978-3-86861-017-8 PB - DME CY - Duisburg ER - TY - JOUR A1 - Wolisz, Henryk A1 - Schütz, Thomas A1 - Blanke, Tobias A1 - Hagenkamp, Markus A1 - Kohrn, Markus A1 - Wesseling, Mark A1 - Müller, Dirk T1 - Cost optimal sizing of smart buildings' energy system components considering changing end-consumer electricity markets JF - Energy Y1 - 2017 U6 - https://doi.org/10.1016/j.energy.2017.06.025 VL - 137 SP - 715 EP - 728 PB - Elsevier CY - Amsterdam ER - TY - CHAP A1 - Schulte, Jonas A1 - Schwager, Christian A1 - Frantz, Cathy A1 - Schloms, Felix A1 - Teixeira Boura, Cristiano José A1 - Herrmann, Ulf T1 - Control concept for a molten salt receiver in star design: Development, optimization and testing with cloud passage scenarios T2 - SolarPACES 2022 conference proceedings N2 - A promising approach to reduce the system costs of molten salt solar receivers is to enable the irradiation of the absorber tubes on both sides. The star design is an innovative receiver design, pursuing this approach. The unconventional design leads to new challenges in controlling the system. This paper presents a control concept for a molten salt receiver system in star design. The control parameters are optimized in a defined test cycle by minimizing a cost function. The control concept is tested in realistic cloud passage scenarios based on real weather data. During these tests, the control system showed no sign of unstable behavior, but to perform sufficiently in every scenario further research and development like integrating Model Predictive Controls (MPCs) need to be done. The presented concept is a starting point to do so. KW - Molten salt receiver KW - Star design KW - Control optimization KW - Cloud passages Y1 - 2023 U6 - https://doi.org/10.52825/solarpaces.v1i.693 SN - 2751-9899 (online) N1 - SolarPACES 2022, 28th International Conference on Concentrating Solar Power and Chemical Energy Systems, 27-30 September, Albuquerque, NM, USA IS - 1 PB - TIB Open Publishing CY - Hannover ER - TY - CHAP A1 - Herrmann, Ulf A1 - Vorbrugg, O. A1 - Nava, P. T1 - Construction and Commissioning Process of the Andasol Solar Field T2 - SolarPACES 2009 : electricity, fuels and clean water powered by the sun ; 15 - 18 September 2009, Berlin, Germany ; the 15th SolarPACES conference ; proceedings Y1 - 2009 SN - 978-3-00-028755-8 PB - Deutsches Zentrum für Luft- u. Raumfahrt CY - Stuttgart ER - TY - CHAP A1 - Hoffschmidt, Bernhard A1 - Alexopoulos, Spiros A1 - Rau, Christoph A1 - Sattler, Johannes, Christoph A1 - Anthrakidis, Anette A1 - Teixeira Boura, Cristiano José A1 - O'Connor, P. A1 - Hilger, Patrick T1 - Concentrating solar power T2 - Comprehensive renewable energy / ed. Ali Sayigh. Vol. 3: Solar thermal systems: components and applications Y1 - 2012 SN - 978-0-08-087872-0 U6 - https://doi.org/10.1016/B978-0-08-087872-0.00319-X VL - 3 SP - 595 EP - 636 PB - Elsevier CY - Amsterdam ER - TY - CHAP A1 - Hoffschmidt, Bernhard A1 - Alexopoulos, Spiros A1 - Rau, Christoph A1 - Sattler, Johannes, Christoph A1 - Anthrakidis, Anette A1 - Teixeira Boura, Cristiano José A1 - O’Connor, B. A1 - Chico Caminos, R.A. A1 - Rendón, C. A1 - Hilger, P. T1 - Concentrating solar power T2 - Comprehensive Renewable Energy (Second Edition) / Volume 3: Solar Thermal Systems: Components and Applications N2 - The focus of this chapter is the production of power and the use of the heat produced from concentrated solar thermal power (CSP) systems. The chapter starts with the general theoretical principles of concentrating systems including the description of the concentration ratio, the energy and mass balance. The power conversion systems is the main part where solar-only operation and the increase in operational hours. Solar-only operation include the use of steam turbines, gas turbines, organic Rankine cycles and solar dishes. The operational hours can be increased with hybridization and with storage. Another important topic is the cogeneration where solar cooling, desalination and of heat usage is described. Many examples of commercial CSP power plants as well as research facilities from the past as well as current installed and in operation are described in detail. The chapter closes with economic and environmental aspects and with the future potential of the development of CSP around the world. KW - Central receiver power plant KW - Concentrated systems KW - Gas turbine KW - Hybridization KW - Power conversion systems Y1 - 2022 SN - 978-0-12-819734-9 SP - 670 EP - 724 PB - Elsevier CY - Amsterdam ER - TY - CHAP A1 - Hoffschmidt, Bernhard A1 - Alexopoulos, Spiros A1 - Rau, Christoph A1 - Sattler, Johannes, Christoph A1 - Anthrakidis, Anette A1 - Teixeira Boura, Cristiano José A1 - O’Connor, B. A1 - Caminos, R.A. Chico A1 - Rendón, C. A1 - Hilger, P. T1 - Concentrating Solar Power T2 - Earth systems and environmental sciences N2 - The focus of this chapter is the production of power and the use of the heat produced from concentrated solar thermal power (CSP) systems. The chapter starts with the general theoretical principles of concentrating systems including the description of the concentration ratio, the energy and mass balance. The power conversion systems is the main part where solar-only operation and the increase in operational hours. Solar-only operation include the use of steam turbines, gas turbines, organic Rankine cycles and solar dishes. The operational hours can be increased with hybridization and with storage. Another important topic is the cogeneration where solar cooling, desalination and of heat usage is described. Many examples of commercial CSP power plants as well as research facilities from the past as well as current installed and in operation are described in detail. The chapter closes with economic and environmental aspects and with the future potential of the development of CSP around the world. KW - Central receiver power plant KW - Concentrated systems KW - Concentrating solar power KW - Fresnel power plant KW - Gas turbine Y1 - 2021 SN - 978-0-12-409548-9 U6 - https://doi.org/10.1016/B978-0-12-819727-1.00089-3 PB - Elsevier CY - Amsterdam ER - TY - CHAP A1 - Alexopoulos, Spiros A1 - Hoffschmidt, Bernhard A1 - Rau, Christoph T1 - Comparison of steady-state and transient simulations for solar tower power plants with open-volumetric receiver T2 - SolarPACES 2011 : concentrating solar power and chemical energy systems : 20 - 23 September, 2011, Granada, Spain Y1 - 2011 CY - Granada ER - TY - CHAP A1 - Latzke, Markus A1 - Alexopoulos, Spiros A1 - Kronhardt, Valentina A1 - Rendón, Carlos A1 - Sattler, Johannes, Christoph T1 - Comparison of Potential Sites in China for Erecting a Hybrid Solar Tower Power Plant with Air Receiver T2 - Energy Procedia Y1 - 2015 U6 - https://doi.org/10.1016/j.egypro.2015.03.142 SN - 1876-6102 N1 - International Conference on Concentrating Solar Power and Chemical Energy Systems, SolarPACES 2014, Beijing, China SP - 1327 EP - 1334 ER - TY - CHAP A1 - Blanke, Tobias A1 - Dring, Bernd A1 - Vontein, Marius A1 - Kuhnhenne, Markus T1 - Climate Change Mitigation Potentials of Vertical Building Integrated Photovoltaic T2 - 8th International Workshop on Integration of Solar Power into Power Systems : 16-17 October 2018, Stockholm, Sweden Y1 - 2018 SP - 1 EP - 7 ER - TY - CHAP A1 - Alexopoulos, Spiros A1 - Hoffschmidt, Bernhard A1 - Rau, Christoph A1 - Sattler, Johannes, Christoph T1 - Choice of solar share of a hybrid power plant of a central receiver system and a biogas plant in dependency of the geographical latitude T2 - World Renewable Energy Congress-Sweden : 8 -13 May, 2011, Linköping, Sweden / ed.: Bahram Moshfegh Y1 - 2011 SN - 9789173930703 SP - 3710 EP - 3717 PB - Univ. Electronic Pr. CY - Linköping ER - TY - CHAP A1 - Gorzalka, Philip A1 - Dahlke, Dennis A1 - Göttsche, Joachim A1 - Israel, Martin A1 - Patel, Dhruvkumar A1 - Prahl, Christoph A1 - Schmiedt, Jacob Estevam A1 - Frommholz, Dirk A1 - Hoffschmidt, Bernhard A1 - Linkiewicz, Magdalena T1 - Building Tomograph–From Remote Sensing Data of Existing Buildings to Building Energy Simulation Input T2 - EBC, Annex 71, Fifth expert meeting, October 17-19, 2018, Innsbruck, Austria Y1 - 2018 ER - TY - CHAP A1 - Alexopoulos, Spiros T1 - Biomass technology and bio-fuels: Heating/cooling and power T2 - Renewable energy systems : theory, innovations, and intelligent applications / eds.: Socrates Kaplanis and Eleni Kaplani Y1 - 2013 SN - 9781624177415 SP - 501 EP - 523 PB - Nova Science Publ. CY - Hauppauge, NY ER - TY - JOUR A1 - Alexopoulos, Spiros T1 - Biogas systems: basics, biogas multifunction, principle of fermentation and hybrid application with a solar tower for the treatment of waste animal manure JF - Journal of Engineering Science and Technology Review N2 - Two of the main environmental problems of today’s society are the continuously increasing production of organic wastes as well as the increase of carbon dioxide in the atmosphere and the related green house effect. A way to solve these problems is the production of biogas. Biogas is a combustible gas consisting of methane, carbon dioxide and small amounts of other gases and trace elements. Production of biogas through anaerobic digestion of animal manure and slurries as well as of a wide range of digestible organic wastes and agricultural residues, converts these substrates into electricity and heat and offers a natural fertiliser for agriculture. The microbiological process of decomposition of organic matter, in the absence of oxygen takes place in reactors, called digesters. Biogas can be used as a fuel in a gas turbine or burner and can be used in a hybrid solar tower system offering a solution for waste treatment of agricultural and animal residues. A solar tower system consists of a heliostat field, which concentrates direct solar irradiation on an open volumetric central receiver. The receiver heats up ambient air to temperatures of around 700°C. The hot air’s heat energy is transferred to a steam Rankine cycle in a heat recovery steam generator (HRSG). The steam drives a steam turbine, which in turn drives a generator for producing electricity. In order to increase the operational hours of a solar tower power plant, a heat storage system and/ or hybridization may be considered. The advantage of solar-fossil hybrid power plants, compared to solar-only systems, lies in low additional investment costs due to an adaptable solar share and reduced technical and economical risks. On sunny days the hybrid system operates in a solar-only mode with the central receiver and on cloudy days and at night with the gas turbine only. As an alternative to methane gas, environmentally neutral biogas can be used for operating the gas turbine. Hence, the hybrid system is operated to 100% from renewable energy sources Y1 - 2012 SN - 1791-2377 N1 - Special Issue on Renewable Energy Systems VL - 5 IS - 4 SP - 48 EP - 55 ER - TY - CHAP A1 - Frantz, Cathy A1 - Binder, Matthias A1 - Busch, Konrad A1 - Ebert, Miriam A1 - Heinrich, Andreas A1 - Kaczmarkiewicz, Nadine A1 - Schlögl-Knothe, Bärbel A1 - Kunze, Tobias A1 - Schuhbauer, Christian A1 - Stetka, Markus A1 - Schwager, Christian A1 - Spiegel, Michael A1 - Teixeira Boura, Cristiano José A1 - Bauer, Thomas A1 - Bonk, Alexander A1 - Eisen, Stefan A1 - Funck, Bernhard T1 - Basic Engineering of a High Performance Molten Salt Tower Receiver System T2 - AIP Conference Proceedings N2 - The production of dispatchable renewable energy will be one of the most important key factors of the future energy supply. Concentrated solar power (CSP) plants operated with molten salt as heat transfer and storage media are one opportunity to meet this challenge. Due to the high concentration factor of the solar tower technology the maximum process temperature can be further increased which ultimately decreases the levelized costs of electricity of the technology (LCOE). The development of an improved tubular molten salt receiver for the next generation of molten salt solar tower plants is the aim of this work. The receiver is designed for a receiver outlet temperature up to 600 °C. Together with a complete molten salt system, the receiver will be integrated into the Multi-Focus-Tower (MFT) in Jülich (Germany). The paper describes the basic engineering of the receiver, the molten salt tower system and a laboratory corrosion setup. Y1 - 2020 U6 - https://doi.org/10.1063/5.0085895 N1 - SOLARPACES 2020: 26th International Conference on Concentrating Solar Power and Chemical Energy Systems, 28 September – 2 October 2020, Freiburg, Germany SP - 1 EP - 10 ER -