TY - JOUR A1 - Bhattarai, Aroj A1 - Horbach, Andreas A1 - Staat, Manfred A1 - Kowalczyk, Wojciech A1 - Tran, Thanh Ngoc T1 - Virgin passive colon biomechanics and a literature review of active contraction constitutive models JF - Biomechanics N2 - The objective of this paper is to present our findings on the biomechanical aspects of the virgin passive anisotropic hyperelasticity of the porcine colon based on equibiaxial tensile experiments. Firstly, the characterization of the intestine tissues is discussed for a nearly incompressible hyperelastic fiber-reinforced Holzapfel–Gasser–Ogden constitutive model in virgin passive loading conditions. The stability of the evaluated material parameters is checked for the polyconvexity of the adopted strain energy function using positive eigenvalue constraints of the Hessian matrix with MATLAB. The constitutive material description of the intestine with two collagen fibers in the submucosal and muscular layer each has been implemented in the FORTRAN platform of the commercial finite element software LS-DYNA, and two equibiaxial tensile simulations are presented to validate the results with the optical strain images obtained from the experiments. Furthermore, this paper also reviews the existing models of the active smooth muscle cells, but these models have not been computationally studied here. The review part shows that the constitutive models originally developed for the active contraction of skeletal muscle based on Hill’s three-element model, Murphy’s four-state cross-bridge chemical kinetic model and Huxley’s sliding-filament hypothesis, which are mainly used for arteries, are appropriate for numerical contraction numerical analysis of the large intestine. KW - virgin passive KW - strain energy function KW - smooth muscle contraction KW - viscoelasticity KW - damage Y1 - 2022 U6 - http://dx.doi.org/10.3390/biomechanics2020013 SN - 2673-7078 VL - 2 IS - 2 SP - 138 EP - 157 PB - MDPI CY - Basel ER - TY - JOUR A1 - Malinowski, Daniel A1 - Fournier, Yvan A1 - Horbach, Andreas A1 - Frick, Michael A1 - Magliani, Mirko A1 - Kalverkamp, Sebastian A1 - Hildinger, Martin A1 - Spillner, Jan A1 - Behbahani, Mehdi A1 - Hima, Flutura T1 - Computational fluid dynamics analysis of endoluminal aortic perfusion JF - Perfusion N2 - Introduction: In peripheral percutaneous (VA) extracorporeal membrane oxygenation (ECMO) procedures the femoral arteries perfusion route has inherent disadvantages regarding poor upper body perfusion due to watershed. With the advent of new long flexible cannulas an advancement of the tip up to the ascending aorta has become feasible. To investigate the impact of such long endoluminal cannulas on upper body perfusion, a Computational Fluid Dynamics (CFD) study was performed considering different support levels and three cannula positions. Methods: An idealized literature-based- and a real patient proximal aortic geometry including an endoluminal cannula were constructed. The blood flow was considered continuous. Oxygen saturation was set to 80% for the blood coming from the heart and to 100% for the blood leaving the cannula. 50% and 90% venoarterial support levels from the total blood flow rate of 6 l/min were investigated for three different positions of the cannula in the aortic arch. Results: For both geometries, the placement of the cannula in the ascending aorta led to a superior oxygenation of all aortic blood vessels except for the left coronary artery. Cannula placements at the aortic arch and descending aorta could support supra-aortic arteries, but not the coronary arteries. All positions were able to support all branches with saturated blood at 90% flow volume. Conclusions: In accordance with clinical observations CFD analysis reveals, that retrograde advancement of a long endoluminal cannula can considerably improve the oxygenation of the upper body and lead to oxygen saturation distributions similar to those of a central cannulation. KW - computational fluid dynamics analysis KW - simulation KW - endoluminal KW - aortic perfusion KW - extracorporeal membrane oxygenation Y1 - 2022 U6 - http://dx.doi.org/10.1177/02676591221099809 SN - 1477-111X VL - 0 IS - 0 SP - 1 EP - 8 PB - Sage CY - London ER -