TY - CHAP A1 - Hüning, Felix A1 - Stüttgen, Marcel T1 - Work in Progress: Interdisciplinary projects in times of COVID-19 crisis – challenges, risks and chances T2 - 2021 IEEE Global Engineering Education Conference (EDUCON) Y1 - 2021 U6 - http://dx.doi.org/10.1109/EDUCON46332.2021.9454006 SP - 1175 EP - 1179 ER - TY - CHAP A1 - Viehmann, Tarik A1 - Limpert, Nicolas A1 - Hofmann, Till A1 - Henning, Mike A1 - Ferrein, Alexander A1 - Lakemeyer, Gerhard ED - Eguchi, Amy ED - Lau, Nuno ED - Paetzel-Prüsmann, Maike ED - Wanichanon, Thanapat T1 - Winning the RoboCup logistics league with visual servoing and centralized goal reasoning T2 - RoboCup 2022 N2 - The RoboCup Logistics League (RCLL) is a robotics competition in a production logistics scenario in the context of a Smart Factory. In the competition, a team of three robots needs to assemble products to fulfill various orders that are requested online during the game. This year, the Carologistics team was able to win the competition with a new approach to multi-agent coordination as well as significant changes to the robot’s perception unit and a pragmatic network setup using the cellular network instead of WiFi. In this paper, we describe the major components of our approach with a focus on the changes compared to the last physical competition in 2019. Y1 - 2023 SN - 978-3-031-28468-7 (Print) SN - 978-3-031-28469-4 (Online) U6 - http://dx.doi.org/https://doi.org/10.1007/978-3-031-28469-4_25 N1 - Robot World Cup, RoboCup 2022. 17. July 2023. Bangkok, Thailand. Part of the Lecture Notes in Computer Science book series (LNAI,volume 13561) SP - 300 EP - 312 PB - Springer CY - Cham ER - TY - CHAP A1 - Hofmann, Till A1 - Limpert, Nicolas A1 - Mataré, Viktor A1 - Ferrein, Alexander A1 - Lakemeyer, Gerhard T1 - Winning the RoboCup Logistics League with Fast Navigation, Precise Manipulation, and Robust Goal Reasoning T2 - RoboCup 2019: Robot World Cup XXIII. RoboCup Y1 - 2019 SN - 978-3-030-35699-6 U6 - http://dx.doi.org/10.1007/978-3-030-35699-6_41 N1 - Lecture Notes in Computer Science, vol 11531 SP - 504 EP - 516 PB - Springer CY - Cham ER - TY - CHAP A1 - Ulmer, Jessica A1 - Braun, Sebastian A1 - Cheng, Chi-Tsun A1 - Dowey, Steve A1 - Wollert, Jörg T1 - Usage of digital twins for gamification applications in manufacturing T2 - Procedia CIRP N2 - Gamification applications are on the rise in the manufacturing sector to customize working scenarios, offer user-specific feedback, and provide personalized learning offerings. Commonly, different sensors are integrated into work environments to track workers’ actions. Game elements are selected according to the work task and users’ preferences. However, implementing gamified workplaces remains challenging as different data sources must be established, evaluated, and connected. Developers often require information from several areas of the companies to offer meaningful gamification strategies for their employees. Moreover, work environments and the associated support systems are usually not flexible enough to adapt to personal needs. Digital twins are one primary possibility to create a uniform data approach that can provide semantic information to gamification applications. Frequently, several digital twins have to interact with each other to provide information about the workplace, the manufacturing process, and the knowledge of the employees. This research aims to create an overview of existing digital twin approaches for digital support systems and presents a concept to use digital twins for gamified support and training systems. The concept is based upon the Reference Architecture Industry 4.0 (RAMI 4.0) and includes information about the whole life cycle of the assets. It is applied to an existing gamified training system and evaluated in the Industry 4.0 model factory by an example of a handle mounting. KW - Gamification KW - Digital Twin KW - Support System Y1 - 2022 U6 - http://dx.doi.org/10.1016/j.procir.2022.05.044 SN - 2212-8271 N1 - 55th CIRP Conference on Manufacturing Systems VL - 107 SP - 675 EP - 680 PB - Elsevier CY - Amsterdam ER - TY - CHAP A1 - Ferrein, Alexander A1 - Bharatheesha, Mukunda A1 - Schiffer, Stefan A1 - Corbato, Carlos Hernandez T1 - TRROS 2018 : Teaching Robotics with ROS Workshop at ERF 2018; Proceedings of the Workshop on Teaching Robotics with ROS (held at ERF 2018), co-located with European Robotics Forum 2018 (ERF 2018), Tampere, Finland, March 15th, 2018 T2 - CEUR Workshop Proceedings Y1 - 2019 SN - 1613-0073 IS - Vol-2329 ER - TY - CHAP A1 - Eichenbaum, Julian A1 - Nikolovski, Gjorgji A1 - Mülhens, Leon A1 - Reke, Michael A1 - Ferrein, Alexander A1 - Scholl, Ingrid T1 - Towards a lifelong mapping approach using Lanelet 2 for autonomous open-pit mine operations T2 - 2023 IEEE 19th International Conference on Automation Science and Engineering (CASE) N2 - Autonomous agents require rich environment models for fulfilling their missions. High-definition maps are a well-established map format which allows for representing semantic information besides the usual geometric information of the environment. These are, for instance, road shapes, road markings, traffic signs or barriers. The geometric resolution of HD maps can be as precise as of centimetre level. In this paper, we report on our approach of using HD maps as a map representation for autonomous load-haul-dump vehicles in open-pit mining operations. As the mine undergoes constant change, we also need to constantly update the map. Therefore, we follow a lifelong mapping approach for updating the HD maps based on camera-based object detection and GPS data. We show our mapping algorithm based on the Lanelet 2 map format and show our integration with the navigation stack of the Robot Operating System. We present experimental results on our lifelong mapping approach from a real open-pit mine. Y1 - 2023 SN - 979-8-3503-2069-5 (Online) SN - 979-8-3503-2070-1 (Print) U6 - http://dx.doi.org/10.1109/CASE56687.2023.10260526 N1 - 19th International Conference on Automation Science and Engineering (CASE), 26-30 August 2023, Auckland, New Zealand. PB - IEEE ER - TY - CHAP A1 - Goeckel, Tom A1 - Schiffer, Stefan A1 - Wagner, Hermann A1 - Lakemeyer, Gerhard T1 - The Video Conference Tool Robot ViCToR T2 - Intelligent Robotics and Applications : 8th International Conference, ICIRA 2015, Portsmouth, UK, August 24-27, 2015, Proceedings, Part II N2 - We present a robotic tool that autonomously follows a conversation to enable remote presence in video conferencing. When humans participate in a meeting with the help of video conferencing tools, it is crucial that they are able to follow the conversation both with acoustic and visual input. To this end, we design and implement a video conferencing tool robot that uses binaural sound source localization as its main source to autonomously orient towards the currently talking speaker. To increase robustness of the acoustic cue against noise we supplement the sound localization with a source detection stage. Also, we include a simple onset detector to retain fast response times. Since we only use two microphones, we are confronted with ambiguities on whether a source is in front or behind the device. We resolve these ambiguities with the help of face detection and additional moves. We tailor the system to our target scenarios in experiments with a four minute scripted conversation. In these experiments we evaluate the influence of different system settings on the responsiveness and accuracy of the device. Y1 - 2015 SN - 978-3-319-22876-1 U6 - http://dx.doi.org/10.1007/978-3-319-22876-1_6 N1 - Lecture Notes in Computer Science ; 9245 SP - 61 EP - 73 PB - Springer ER - TY - CHAP A1 - Booysen, Tracy A1 - Mathew, Thomas A1 - Knox, Greig A1 - Fong, W. K. A1 - Stüttgen, Marcel A1 - Ferrein, Alexander A1 - Steinbauer, Gerald T1 - The Scarab Project T2 - ICRA 2015 Developing Countries Forum N2 - Urban Search and Rescue (USAR) is an active research field in the robotics community. Despite recent advances for many open research questions, these kind of systems are not widely used in real rescue missions. One reason is that such systems are complex and not (yet) very reliable; another is that one has to be an robotic expert to run such a system. Moreover, available rescue robots are very expensive and the benefits of using them are still limited. In this paper, we present the Scarab robot, an alternative design for a USAR robot. The robot is light weight, humanpackable and its primary purpose is that of extending the rescuer’s capability to sense the disaster site. The idea is that a responder throws the robot to a certain spot. The robot survives the impact with the ground and relays sensor data such as camera images or thermal images to the responder’s hand-held control unit from which the robot can be remotely controlled. Y1 - 2015 ER - TY - CHAP A1 - Niemueller, Tim A1 - Ferrein, Alexander A1 - Reuter, Sebastian A1 - Jeschke, Sabina A1 - Lakemeyer, Gerhard T1 - The RoboCup Logistics League as a Holistic Multi-Robot Smart Factory Benchmark T2 - Proceedings of the IROS 2015 Open forum on evaluation of results, replication of experiments and benchmarking in robotics research N2 - With autonomous mobile robots receiving increased attention in industrial contexts, the need for benchmarks becomes more and more an urgent matter. The RoboCup Logistics League (RCLL) is one specific industry-inspired scenario focusing on production logistics within a Smart Factory. In this paper, we describe how the RCLL allows to assess the performance of a group of robots within the scenario as a whole, focusing specifically on the coordination and cooperation strategies and the methods and components to achieve them. We report on recent efforts to analyze performance of teams in 2014 to understand the implications of the current grading scheme, and derived criteria and metrics for performance assessment based on Key Performance Indicators (KPI) adapted from classic factory evaluation. We reflect on differences and compatibility towards RoCKIn, a recent major benchmarking European project. Y1 - 2015 ER - TY - JOUR A1 - Ferrein, Alexander A1 - Steinbauer, Gerald T1 - The Interplay of Aldebaran and RoboCup JF - KI - Künstliche Intelligenz Y1 - 2016 U6 - http://dx.doi.org/10.1007/s13218-016-0440-1 SN - 1610-1987 VL - 30 IS - 3-4 SP - 325 EP - 326 PB - Springer CY - Berlin ER - TY - CHAP A1 - Niemueller, Tim A1 - Reuter, Sebastian A1 - Ewert, Daniel A1 - Ferrein, Alexander A1 - Jeschke, Sabina A1 - Lakemeyer, Gerhard ED - Almeida, Luis T1 - The Carologistics Approach to Cope with the Increased Complexity and New Challenges of the RoboCup Logistics League 2015 T2 - RoboCup 2015: Robot World Cup XIX Y1 - 2016 SN - 978-3-319-29339-4 U6 - http://dx.doi.org/10.1007/978-3-319-29339-4_4 N1 - Lecture Notes in Computer Science ; 9513 SP - 47 EP - 59 PB - Springer International Publishing CY - Cham ER - TY - CHAP A1 - Stopforth, Riaan A1 - Davrajh, Shaniel A1 - Ferrein, Alexander T1 - South African robotics entity for a collaboration initiative T2 - Pattern Recognition Association of South Africa and Robotics and Mechatronics International Conference (PRASA-RobMech), 2016 Y1 - 2017 SN - 978-1-5090-3335-5 U6 - http://dx.doi.org/10.1109/RoboMech.2016.7813144 N1 - PRASA-RobMech, Nov. 30 2016-Dec. 2 2016, Stellenbosch, South Africa SP - 1 EP - 6 PB - IEEE ER - TY - CHAP A1 - Kallweit, Stephan A1 - Gottschalk, Michael A1 - Walenta, Robert T1 - ROS based safety concept for collaborative robots in industrial applications T2 - Advances in robot design and intelligent control : proceedings of the 24th International Conference on Robotics in Alpe-Adria-Danube Region (RAAD). (Advances in intelligent systems and computing ; 371) N2 - The production and assembly of customized products increases the demand for flexible automation systems. One approach is to remove the safety fences that separate human and industrial robot to combine their skills. This collaboration possesses a certain risk for the human co-worker, leading to numerous safety concepts to protect him. The human needs to be monitored and tracked by a safety system using different sensors. The proposed system consists of a RGBD camera for surveillance of the common working area, an array of optical distance sensors to compensate shadowing effects of the RGBD camera and a laser range finder to detect the co-worker when approaching the work cell. The software for collision detection, path planning, robot control and predicting the behaviour of the co-worker is based on the Robot Operating System (ROS). A first prototype of the work cell shows that with advanced algorithms from the field of mobile robotics a very flexible safety concept can be realized: the robot not simply stops its movement when detecting a collision, but plans and executes an alternative path around the obstacle. KW - Collaborative robot KW - Human-Robot interaction KW - Safety concept KW - Workspace monitoring KW - Path planning Y1 - 2016 SN - 978-3-319-21289-0 (Print) ; 978-3-319-21290-6 (E-Book) U6 - http://dx.doi.org/10.1007/978-3-319-21290-6_3 SP - 27 EP - 35 PB - Springer CY - Cham ER - TY - CHAP A1 - Chavez Bermudez, Victor Francisco A1 - Cruz Castanon, Victor Fernando A1 - Ruchay, Marco A1 - Wollert, Jörg ED - Leipzig, Hochschule für Technik, Wirtschaft und Kultur T1 - Rapid prototyping framework for automation applications based on IO-Link T2 - Tagungsband AALE 2022 N2 - The development of protype applications with sensors and actuators in the automation industry requires tools that are independent of manufacturer, and are flexible enough to be modified or extended for any specific requirements. Currently, developing prototypes with industrial sensors and actuators is not straightforward. First of all, the exchange of information depends on the industrial protocol that these devices have. Second, a specific configuration and installation is done based on the hardware that is used, such as automation controllers or industrial gateways. This means that the development for a specific industrial protocol, highly depends on the hardware and the software that vendors provide. In this work we propose a rapid-prototyping framework based on Arduino to solve this problem. For this project we have focused to work with the IO-Link protocol. The framework consists of an Arduino shield that acts as the physical layer, and a software that implements the IO-Link Master protocol. The main advantage of such framework is that an application with industrial devices can be rapid-prototyped with ease as its vendor independent, open-source and can be ported easily to other Arduino compatible boards. In comparison, a typical approach requires proprietary hardware, is not easy to port to another system and is closed-source. KW - Rapid-prototyping KW - Arduino KW - IO-Link KW - Industrial Communication Y1 - 2022 SN - 978-3-910103-00-9 U6 - http://dx.doi.org/10.33968/2022.28 N1 - 18. AALE-Konferenz, Pforzheim, 09.03.-11.03.2022. CY - Leipzig ER - TY - JOUR A1 - Coll-Perales, Baldomero A1 - Schulte-Tigges, Joschua A1 - Rondinone, Michele A1 - Gozalvez, Javier A1 - Reke, Michael A1 - Matheis, Dominik A1 - Walter, Thomas T1 - Prototyping and evaluation of infrastructure-assisted transition of control for cooperative automated vehicles JF - IEEE Transactions on Intelligent Transportation Systems N2 - Automated driving is now possible in diverse road and traffic conditions. However, there are still situations that automated vehicles cannot handle safely and efficiently. In this case, a Transition of Control (ToC) is necessary so that the driver takes control of the driving. Executing a ToC requires the driver to get full situation awareness of the driving environment. If the driver fails to get back the control in a limited time, a Minimum Risk Maneuver (MRM) is executed to bring the vehicle into a safe state (e.g., decelerating to full stop). The execution of ToCs requires some time and can cause traffic disruption and safety risks that increase if several vehicles execute ToCs/MRMs at similar times and in the same area. This study proposes to use novel C-ITS traffic management measures where the infrastructure exploits V2X communications to assist Connected and Automated Vehicles (CAVs) in the execution of ToCs. The infrastructure can suggest a spatial distribution of ToCs, and inform vehicles of the locations where they could execute a safe stop in case of MRM. This paper reports the first field operational tests that validate the feasibility and quantify the benefits of the proposed infrastructure-assisted ToC and MRM management. The paper also presents the CAV and roadside infrastructure prototypes implemented and used in the trials. The conducted field trials demonstrate that infrastructure-assisted traffic management solutions can reduce safety risks and traffic disruptions. KW - Automated driving KW - automated vehicles KW - connected automated vehicles KW - CAV KW - experimental evaluation Y1 - 2021 U6 - http://dx.doi.org/10.1109/TITS.2021.3061085 SN - 1524-9050 (Print) SN - 1558-0016 (Online) VL - 23 IS - 7 SP - 6720 EP - 6736 PB - IEEE ER - TY - JOUR A1 - Braun, Sebastian A1 - Cheng, Chi-Tsun A1 - Dowey, Steve A1 - Wollert, Jörg T1 - Performance evaluation of skill-based order-assignment in production environments with multi-agent systems JF - IEEE Journal of Emerging and Selected Topics in Industrial Electronics N2 - The fourth industrial revolution introduces disruptive technologies to production environments. One of these technologies are multi-agent systems (MASs), where agents virtualize machines. However, the agent's actual performances in production environments can hardly be estimated as most research has been focusing on isolated projects and specific scenarios. We address this gap by implementing a highly connected and configurable reference model with quantifiable key performance indicators (KPIs) for production scheduling and routing in single-piece workflows. Furthermore, we propose an algorithm to optimize the search of extrema in highly connected distributed systems. The benefits, limits, and drawbacks of MASs and their performances are evaluated extensively by event-based simulations against the introduced model, which acts as a benchmark. Even though the performance of the proposed MAS is, on average, slightly lower than the reference system, the increased flexibility allows it to find new solutions and deliver improved factory-planning outcomes. Our MAS shows an emerging behavior by using flexible production techniques to correct errors and compensate for bottlenecks. This increased flexibility offers substantial improvement potential. The general model in this paper allows the transfer of the results to estimate real systems or other models. KW - cyber-physical production systems KW - event-based simulation KW - multi-agent systems KW - digital factory KW - industrial agents Y1 - 2021 U6 - http://dx.doi.org/10.1109/JESTIE.2021.3108524 SN - 2687-9735 IS - Early Access PB - IEEE CY - New York ER - TY - JOUR A1 - Engemann, Heiko A1 - Du, Shengzhi A1 - Kallweit, Stephan A1 - Cönen, Patrick A1 - Dawar, Harshal T1 - OMNIVIL - an autonomous mobile manipulator for flexible production JF - Sensors Y1 - 2020 SN - 1424-8220 U6 - http://dx.doi.org/10.3390/s20247249 N1 - Special issue: Sensor Networks Applications in Robotics and Mobile Systems VL - 20 IS - 24, art. no. 7249 SP - 1 EP - 30 PB - MDPI CY - Basel ER - TY - CHAP A1 - Nikolovski, Gjorgji A1 - Limpert, Nicolas A1 - Nessau, Hendrik A1 - Reke, Michael A1 - Ferrein, Alexander T1 - Model-predictive control with parallelised optimisation for the navigation of autonomous mining vehicles T2 - 2023 IEEE Intelligent Vehicles Symposium (IV) N2 - The work in modern open-pit and underground mines requires the transportation of large amounts of resources between fixed points. The navigation to these fixed points is a repetitive task that can be automated. The challenge in automating the navigation of vehicles commonly used in mines is the systemic properties of such vehicles. Many mining vehicles, such as the one we have used in the research for this paper, use steering systems with an articulated joint bending the vehicle’s drive axis to change its course and a hydraulic drive system to actuate axial drive components or the movements of tippers if available. To address the difficulties of controlling such a vehicle, we present a model-predictive approach for controlling the vehicle. While the control optimisation based on a parallel error minimisation of the predicted state has already been established in the past, we provide insight into the design and implementation of an MPC for an articulated mining vehicle and show the results of real-world experiments in an open-pit mine environment. KW - Mpc KW - Control KW - Path-following KW - Navigation KW - Automation Y1 - 2023 SN - 979-8-3503-4691-6 (Online) SN - 979-8-3503-4692-3 (Print) U6 - http://dx.doi.org/10.1109/IV55152.2023.10186806 N1 - IEEE Symposium on Intelligent Vehicle, 4.-7. June 2023, Anchorage, AK, USA. PB - IEEE ER - TY - JOUR A1 - Niemueller, Tim A1 - Karras, Ulrich A1 - Ferrein, Alexander T1 - Meisterschaft der Maschinen: Die Industrial Logistic Liga JF - C´t Magazin für Computertechnik Y1 - 2017 IS - 26 ER - TY - CHAP A1 - Scholl, Ingrid A1 - Bartella, Alex A1 - Moluluo, Cem A1 - Ertural, Berat A1 - Laing, Frederic A1 - Suder, Sebastian T1 - MedicVR : Acceleration and Enhancement Techniques for Direct Volume Rendering in Virtual Reality T2 - Bildverarbeitung für die Medizin 2019 : Algorithmen – Systeme – Anwendungen Y1 - 2019 SN - 978-3-658-25326-4 U6 - http://dx.doi.org/10.1007/978-3-658-25326-4_32 SP - 152 EP - 157 PB - Springer Vieweg CY - Wiesbaden ER -