TY - JOUR A1 - Finger, Felix A1 - Bil, Cees A1 - Braun, Carsten T1 - Initial Sizing Methodology for Hybrid-Electric General Aviation Aircraft JF - Journal of Aircraft Y1 - 2019 U6 - https://doi.org/10.2514/1.C035428 SN - 1533-3868 VL - 57 IS - 2 SP - 245 EP - 255 ER - TY - CHAP A1 - Finger, Felix A1 - Götten, Falk A1 - Braun, Carsten T1 - Initial Sizing for a Family of Hybrid-Electric VTOL General Aviation Aircraft T2 - 67. Deutscher Luft- und Raumfahrtkongress 2018 Y1 - 2018 ER - TY - JOUR A1 - Havermann, Marc A1 - Kainuma, M. A1 - Takayama, K. T1 - Influence of Physical and Geometrical Parameters on Vortex Rings Generated by a Shock Tube / Havermann, M. ; Kainuma, M. ; Takayama, K. JF - Non-lethal options enhancing security and stability : 3rd European Symposium on Non-Lethal Weapons, May 10 - 12, 2005, Ettlingen, Germany / ICT, Fraunhofer-Institut Chemische Technologie; European Working Group Non-Lethal Weapons Y1 - 2005 N1 - European Symposium on Non-Lethal Weapons ; (3 ; 2005.5.10-12 ; Ettlingen); V 24 PB - ICT CY - Pfinztal ER - TY - JOUR A1 - Bullerschen, Klaus-Gerd A1 - Wilhelmi, Herbert A1 - Wimmer, W. T1 - Influence of non-uniform material properties and water cooling on current density and temperature profiles in arc furnace elektrodes JF - Steel Research. 56 (1985), H. 11 Y1 - 1985 SN - 0177-4832 SP - 559 EP - 564 ER - TY - CHAP A1 - Hoefling, J. A1 - Schirra, Julian A1 - Spohr, A. A1 - Schäfer, D. T1 - Induced drag computation with wake model schemes for highly non-planar wing systems T2 - Deutscher Luft- und Raumfahrtkongress 2013 : 10.9. - 12.9.2013, Stuttgart Y1 - 2013 SP - 1 EP - 10 PB - Dt. Ges. für Luft- und Raumfahrt CY - Bonn ER - TY - CHAP A1 - Thenent, N. E. A1 - Dahmann, Peter T1 - Increasing aircraft design flexibility ‐ The development of a hydrostatic transmission for gliders with self‐launching capability T2 - Deutscher Luft- und Raumfahrtkongress 2011 : Bremen, 27. bis 29. September 2011 ; Tagungsband Y1 - 2011 SN - 978-3-9321-8274-7 SP - 865 EP - 883 PB - Dt. Gesellschaft für Luft- und Raumfahrt CY - Bonn ER - TY - CHAP A1 - Neu, Eugen A1 - Janser, Frank A1 - Khatibi, Akbar A. A1 - Orifici, Adrian C. T1 - In-flight vibration-based structural health monitoring of aircraft wings T2 - 30th Congress of the internatonal council of the aeronautical sciences : 25.-30. September 2016, Daejeon, Korea N2 - This work presents a methodology for automated damage-sensitive feature extraction and anomaly detection under multivariate operational variability for in-flight assessment of wings. The method uses a passive excitation approach, i. e. without the need for artificial actuation. The modal system properties (natural frequencies and damping ratios) are used as damage-sensitive features. Special emphasis is placed on the use of Fiber Bragg Grating (FBG) sensing technology and the consideration of Operational and Environmental Variability (OEV). Measurements from a wind tunnel investigation with a composite cantilever equipped with FBG and piezoelectric sensors are used to successfully detect an impact damage. In addition, the feasibility of damage localisation and severity estimation is evaluated based on the coupling found between damageand OEV-induced feature changes. Y1 - 2016 ER - TY - CHAP A1 - Thoma, Andreas A1 - Fisher, Alex A1 - Braun, Carsten T1 - Improving the px4 avoid algorithm by bio-inspired flight strategies T2 - DLRK2020 - „Luft- und Raumfahrt – Verantwortung in allen Dimensionen“ Y1 - 2020 U6 - https://doi.org/10.25967/530183 N1 - Deutscher Luft- und Raumfahrtkongress 2020, 1. bis 3. September 2020 – Online, „Luft- und Raumfahrt – Verantwortung in allen Dimensionen“ ER - TY - JOUR A1 - Thoma, Andreas A1 - Gardi, Alessandro A1 - Fisher, Alex A1 - Braun, Carsten T1 - Improving local path planning for UAV flight in challenging environments by refining cost function weights JF - CEAS Aeronautical Journal N2 - Unmanned Aerial Vehicles (UAV) constantly gain in versatility. However, more reliable path planning algorithms are required until full autonomous UAV operation is possible. This work investigates the algorithm 3DVFH* and analyses its dependency on its cost function weights in 2400 environments. The analysis shows that the 3DVFH* can find a suitable path in every environment. However, a particular type of environment requires a specific choice of cost function weights. For minimal failure, probability interdependencies between the weights of the cost function have to be considered. This dependency reduces the number of control parameters and simplifies the usage of the 3DVFH*. Weights for costs associated with vertical evasion (pitch cost) and vicinity to obstacles (obstacle cost) have the highest influence on the failure probability of the local path planner. Environments with mainly very tall buildings (like large American city centres) require a preference for horizontal avoidance manoeuvres (achieved with high pitch cost weights). In contrast, environments with medium-to-low buildings (like European city centres) benefit from vertical avoidance manoeuvres (achieved with low pitch cost weights). The cost of the vicinity to obstacles also plays an essential role and must be chosen adequately for the environment. Choosing these two weights ideal is sufficient to reduce the failure probability below 10%. KW - Bio-inspired systems KW - Path planning KW - Obstacle avoidance KW - Unmanned aerial vehicles Y1 - 2024 U6 - https://doi.org/10.1007/s13272-024-00741-x SN - 1869-5590 (eISSN) SN - 1869-5582 N1 - Corresponding author: Andreas Thoma PB - Springer CY - Wien ER - TY - JOUR A1 - Haj Ayed, A. A1 - Kusterer, K. A1 - Funke, Harald A1 - Keinz, Jan A1 - Striegan, Constantin A1 - Bohn, D. T1 - Improvement study for the dry-low-NOx hydrogen micromix combustion technology JF - Propulsion and power research Y1 - 2015 U6 - https://doi.org/10.1016/j.jppr.2015.07.003 SN - 2212-540X VL - Vol. 4 IS - Iss. 3 SP - 132 EP - 140 ER - TY - JOUR A1 - Lettini, Antonio A1 - Havermann, Marc A1 - Guidetti, Marco A1 - Fornaciari, Andrea T1 - Improved functionalities and energy saving potential on mobile machines combining electronics with flow sharing valve and variable displacement pump JF - IFK 7, 7th International Fluid Power Conference, Efficiency through Fluid Power, 7. Internationales Fluidtechnisches Kolloquium, Workshop Proceedings, Vol. 3, Aachen, DE, 22.-24. Mar, 2010 Y1 - 2010 SN - 978-3-940565-92-1 N1 - IFK, 7, Internationales Fluidtechnisches Kolloquium, 7., Aachen, DE, 2010-03-22 - 2010-03-24 SP - 103 EP - 114 PB - - ER - TY - JOUR A1 - Götten, Falk A1 - Havermann, Marc A1 - Braun, Carsten A1 - Marino, Matthew A1 - Bil, Cees T1 - Improved Form Factor for Drag Estimation of Fuselages with Various Cross Sections JF - Journal of Aircraft N2 - The paper presents an aerodynamic investigation of 70 different streamlined bodies with fineness ratios ranging from 2 to 10. The bodies are chosen to idealize both unmanned and small manned aircraft fuselages and feature cross-sectional shapes that vary from circular to quadratic. The study focuses on friction and pressure drag in dependency of the individual body’s fineness ratio and cross section. The drag forces are normalized with the respective body’s wetted area to comply with an empirical drag estimation procedure. Although the friction drag coefficient then stays rather constant for all bodies, their pressure drag coefficients decrease with an increase in fineness ratio. Referring the pressure drag coefficient to the bodies’ cross-sectional areas shows a distinct pressure drag minimum at a fineness ratio of about three. The pressure drag of bodies with a quadratic cross section is generally higher than for bodies of revolution. The results are used to derive an improved form factor that can be employed in a classic empirical drag estimation method. The improved formulation takes both the fineness ratio and cross-sectional shape into account. It shows superior accuracy in estimating streamlined body drag when compared with experimental data and other form factor formulations of the literature. Y1 - 2020 U6 - https://doi.org/10.2514/1.C036032 SN - 1533-3868 SP - 1 EP - 13 PB - AIAA CY - Reston, Va. ER - TY - CHAP A1 - Ludowicy, Jonas A1 - Rings, René A1 - Finger, Felix A1 - Braun, Carsten A1 - Bil, Cees T1 - Impact of Propulsion Technology Levels on the Sizing and Energy Consumption for Serial HybridElectric General Aviation Aircraft T2 - Asia Pacific International Symposium on Aerospace Technology. APISAT 2019 Y1 - 2019 ER - TY - JOUR A1 - Dachwald, Bernd A1 - McDonald, Malcolm A1 - McInnes, Colin R. A1 - Mengali, Giovanni T1 - Impact of Optical Degradation on Solar Sail Mission Performance JF - Journal of Spacecraft and Rockets. 44 (2007), H. 4 Y1 - 2007 SN - 0022-4650 N1 - 2. ISSN: 1533-6794 SP - 740 EP - 749 ER - TY - CHAP A1 - Finger, Felix A1 - Braun, Carsten A1 - Bil, Cees T1 - Impact of Engine Failure Constraints on the Initial Sizing of Hybrid-Electric GA Aircraft T2 - AIAA Scitech 2019 Forum Y1 - 2019 U6 - https://doi.org/10.2514/6.2019-1812 N1 - AIAA Scitech Forum, 2019; San Diego; United States; 7 January 2019 through 11 January 2019 ER - TY - JOUR A1 - Finger, Felix A1 - Braun, Carsten A1 - Bil, Cees T1 - Impact of electric propulsion technology and mission requirements on the performance of VTOL UAVs JF - CEAS Aeronautical Journal N2 - One of the engineering challenges in aviation is the design of transitioning vertical take-off and landing (VTOL) aircraft. Thrust-borne flight implies a higher mass fraction of the propulsion system, as well as much increased energy consumption in the take-off and landing phases. This mass increase is typically higher for aircraft with a separate lift propulsion system than for aircraft that use the cruise propulsion system to support a dedicated lift system. However, for a cost–benefit trade study, it is necessary to quantify the impact the VTOL requirement and propulsion configuration has on aircraft mass and size. For this reason, sizing studies are conducted. This paper explores the impact of considering a supplemental electric propulsion system for achieving hovering flight. Key variables in this study, apart from the lift system configuration, are the rotor disk loading and hover flight time, as well as the electrical systems technology level for both batteries and motors. Payload and endurance are typically used as the measures of merit for unmanned aircraft that carry electro-optical sensors, and therefore the analysis focuses on these particular parameters. Y1 - 2018 U6 - https://doi.org/10.1007/s13272-018-0352-x SN - 1869-5582 print SN - 1869-5590 online VL - 10 IS - 3 SP - 843 PB - Springer ER - TY - JOUR A1 - Finger, Felix A1 - Braun, Carsten A1 - Bil, Cees T1 - Impact of Battery Performance on the Initial Sizing of Hybrid-Electric General Aviation Aircraft JF - Journal of Aerospace Engineering N2 - Studies suggest that hybrid-electric aircraft have the potential to generate fewer emissions and be inherently quieter when compared to conventional aircraft. By operating combustion engines together with an electric propulsion system, synergistic benefits can be obtained. However, the performance of hybrid-electric aircraft is still constrained by a battery’s energy density and discharge rate. In this paper, the influence of battery performance on the gross mass for a four-seat general aviation aircraft with a hybrid-electric propulsion system is analyzed. For this design study, a high-level approach is chosen, using an innovative initial sizing methodology to determine the minimum required aircraft mass for a specific set of requirements and constraints. Only the peak-load shaving operational strategy is analyzed. Both parallel- and serial-hybrid propulsion configurations are considered for two different missions. The specific energy of the battery pack is varied from 200 to 1,000 W⋅h/kg, while the discharge time, and thus the normalized discharge rating (C-rating), is varied between 30 min (2C discharge rate) and 2 min (30C discharge rate). With the peak-load shaving operating strategy, it is desirable for hybrid-electric aircraft to use a light, low capacity battery system to boost performance. For this case, the battery’s specific power rating proved to be of much higher importance than for full electric designs, which have high capacity batteries. Discharge ratings of 20C allow a significant take-off mass reduction aircraft. The design point moves to higher wing loadings and higher levels of hybridization if batteries with advanced technology are used. Y1 - 2020 U6 - https://doi.org/10.1061/(ASCE)AS.1943-5525.0001113 SN - 1943-5525 VL - 33 IS - 3 PB - ASCE CY - Reston, Va. ER - TY - JOUR A1 - Gerhardt, Hans Joachim A1 - Wacker, J. T1 - Immissionsprognosen auf der Basis von Windkanaluntersuchungen JF - Immissionsschutz. 4 (1999), H. 3 Y1 - 1999 SN - 1430-9262 SP - 84 EP - 89 ER - TY - CHAP A1 - Dachwald, Bernd A1 - Xu, Changsheng A1 - Feldmann, Marco A1 - Plescher, Engelbert T1 - IceMole : Development of a novel subsurface ice probe and testing of the first prototype on the Morteratsch Glacier T2 - EGU General Assembly 2011 Vienna | Austria | 03 – 08 April 2011 N2 - We present the novel concept of a combined drilling and melting probe for subsurface ice research. This probe, named “IceMole”, is currently developed, built, and tested at the FH Aachen University of Applied Sciences’ Astronautical Laboratory. Here, we describe its first prototype design and report the results of its field tests on the Swiss Morteratsch glacier. Although the IceMole design is currently adapted to terrestrial glaciers and ice shields, it may later be modified for the subsurface in-situ investigation of extraterrestrial ice, e.g., on Mars, Europa, and Enceladus. If life exists on those bodies, it may be present in the ice (as life can also be found in the deep ice of Earth). Y1 - 2011 ER - TY - JOUR A1 - Dachwald, Bernd A1 - Mikucki, Jill A1 - Tulaczyk, Slawek A1 - Digel, Ilya A1 - Espe, Clemens A1 - Feldmann, Marco A1 - Francke, Gero A1 - Kowalski, Julia A1 - Xu, Changsheng T1 - IceMole : A maneuverable probe for clean in situ analysis and sampling of subsurface ice and subglacial aquatic ecosystems JF - Annals of Glaciology N2 - There is significant interest in sampling subglacial environments for geobiological studies, but they are difficult to access. Existing ice-drilling technologies make it cumbersome to maintain microbiologically clean access for sample acquisition and environmental stewardship of potentially fragile subglacial aquatic ecosystems. The IceMole is a maneuverable subsurface ice probe for clean in situ analysis and sampling of glacial ice and subglacial materials. The design is based on the novel concept of combining melting and mechanical propulsion. It can change melting direction by differential heating of the melting head and optional side-wall heaters. The first two prototypes were successfully tested between 2010 and 2012 on glaciers in Switzerland and Iceland. They demonstrated downward, horizontal and upward melting, as well as curve driving and dirt layer penetration. A more advanced probe is currently under development as part of the Enceladus Explorer (EnEx) project. It offers systems for obstacle avoidance, target detection, and navigation in ice. For the EnEx-IceMole, we will pay particular attention to clean protocols for the sampling of subglacial materials for biogeochemical analysis. We plan to use this probe for clean access into a unique subglacial aquatic environment at Blood Falls, Antarctica, with return of a subglacial brine sample. KW - Antarctic Glaciology KW - Extraterrestrial Glaciology KW - Glaciological instruments and methods KW - Subclacial exploration KW - Subglacial lakes Y1 - 2014 U6 - https://doi.org/10.3189/2014AoG65A004 SN - 1727-5644 VL - 55 IS - 65 SP - 14 EP - 22 PB - Cambridge University Press CY - Cambridge ER -