TY - JOUR A1 - Grotendorst, Johannes T1 - Maple programs for converting series expansions to rational functions using the Levin transformation automatic generation of FORTRAN functions for numerical applications JF - Computer Physics Communications. 55 (1991), H. 3 Y1 - 1991 SN - 0010-4655 SP - 325 EP - 335 ER - TY - JOUR A1 - Reißel, Martin A1 - Hirschfeld, J. A. A1 - Lustfeld, H. A1 - Steffen, B. T1 - Magnetotomography and Electric Currents in a Fuel Cell / Lustfeld, H. ; Reißel, M. ; Steffen, B. JF - Fuel Cells. 9 (2009), H. 4 Y1 - 2009 SN - 1615-6854 SP - 474 EP - 481 PB - Wiley-VCH CY - Weinheim ER - TY - CHAP A1 - Katz, Eugenii A1 - Willner, Itamar T1 - Magneto-controlled quantized electron transfer to surface-confined redox units and metal nanoparticles N2 - Hydrophobic magnetic nanoparticles (NPs) consisting of undecanoate-capped magnetite (Fe3O4, average diameter ca. 5 nm) are used to control quantized electron transfer to surface-confined redox units and metal NPs. A two-phase system consisting of an aqueous electrolyte solution and a toluene phase that includes the suspended undecanoatecapped magnetic NPs is used to control the interfacial properties of the electrode surface. The attracted magnetic NPs form a hydrophobic layer on the electrode surface resulting in the change of the mechanisms of the surface-confined electrochemical processes. A quinone-monolayer modified Au electrode demonstrates an aqueous-type of the electrochemical process (2e-+2H+ redox mechanism) for the quinone units in the absence of the hydrophobic magnetic NPs, while the attraction of the magnetic NPs to the surface results in the stepwise single-electron transfer mechanism characteristic of a dry nonaqueous medium. Also, the attraction of the hydrophobic magnetic NPs to the Au electrode surface modified with Au NPs (ca. 1.4 nm) yields a microenvironment with a low dielectric constant that results in the single-electron quantum charging of the Au NPs. KW - Biosensor KW - Nanoparticles KW - magnetic particles KW - quantum charging KW - modified electrode Y1 - 2006 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:hbz:a96-opus-1528 ER - TY - JOUR A1 - Engelmann, Ulrich M. A1 - Buhl, Eva Miriam A1 - Draack, Sebastian A1 - Viereck, Thilo A1 - Frank, A1 - Schmitz-Rode, Thomas A1 - Slabu, Ioana T1 - Magnetic relaxation of agglomerated and immobilized iron oxide nanoparticles for hyperthermia and imaging applications JF - IEEE Magnetic Letters N2 - Magnetic nanoparticles (MNPs) are used as therapeutic and diagnostic agents for local delivery of heat and image contrast enhancement in diseased tissue. Besides magnetization, the most important parameter that determines their performance for these applications is their magnetic relaxation, which can be affected when MNPs immobilize and agglomerate inside tissues. In this letter, we investigate different MNP agglomeration states for their magnetic relaxation properties under excitation in alternating fields and relate this to their heating efficiency and imaging properties. With focus on magnetic fluid hyperthermia, two different trends in MNP heating efficiency are measured: an increase by up to 23% for agglomerated MNP in suspension and a decrease by up to 28% for mixed states of agglomerated and immobilized MNP, which indicates that immobilization is the dominant effect. The same comparatively moderate effects are obtained for the signal amplitude in magnetic particle spectroscopy. Y1 - 2018 U6 - http://dx.doi.org/10.1109/LMAG.2018.2879034 SN - 1949-307X VL - 9 IS - Article number 8519617 PB - IEEE CY - New York, NY ER - TY - CHAP A1 - Engelmann, Ulrich M. A1 - Shasha, Carolyn A1 - Slabu, Ioana T1 - Magnetic nanoparticle relaxation in biomedical application: focus on simulating nanoparticle heating T2 - Magnetic nanoparticles in human health and medicine Y1 - 2021 SN - 978-1-119-75467-1 SP - 327 EP - 354 PB - Wiley-Blackwell CY - Hoboken, New Jeersey ER - TY - JOUR A1 - Rabehi, Amine A1 - Garlan, Benjamin A1 - Achtsnicht, Stefan A1 - Krause, Hans-Joachim A1 - Offenhäusser, Andreas A1 - Ngo, Kieu A1 - Neveu, Sophie A1 - Graff-Dubois, Stephanie A1 - Kokabi, Hamid T1 - Magnetic detection structure for Lab-on-Chip applications based on the frequency mixing technique JF - Sensors N2 - A magnetic frequency mixing technique with a set of miniaturized planar coils was investigated for use with a completely integrated Lab-on-Chip (LoC) pathogen sensing system. The system allows the detection and quantification of superparamagnetic beads. Additionally, in terms of magnetic nanoparticle characterization ability, the system can be used for immunoassays using the beads as markers. Analytical calculations and simulations for both excitation and pick-up coils are presented; the goal was to investigate the miniaturization of simple and cost-effective planar spiral coils. Following these calculations, a Printed Circuit Board (PCB) prototype was designed, manufactured, and tested for limit of detection, linear response, and validation of theoretical concepts. Using the magnetic frequency mixing technique, a limit of detection of 15 µg/mL of 20 nm core-sized nanoparticles was achieved without any shielding. KW - Lab-on-Chip KW - magnetic sensing KW - frequency mixing KW - superparamagnetic nanoparticles KW - magnetic beads Y1 - 2018 U6 - http://dx.doi.org/10.3390/s18061747 SN - 1424-8220 VL - 18 IS - 6 PB - MDPI CY - Basel ER - TY - CHAP A1 - Simsek, Beril A1 - Krause, Hans-Joachim A1 - Engelmann, Ulrich M. ED - Digel, Ilya ED - Staat, Manfred ED - Trzewik, Jürgen ED - Sielemann, Stefanie ED - Erni, Daniel ED - Zylka, Waldemar T1 - Magnetic biosensing with magnetic nanoparticles: Simulative approach to predict signal intensity in frequency mixing magnetic detection T2 - 4th YRA MedTech Symposium 2024 : February 1 / 2024 / FH Aachen N2 - Magnetic nanoparticles (MNP) are investigated with great interest for biomedical applications in diagnostics (e.g. imaging: magnetic particle imaging (MPI)), therapeutics (e.g. hyperthermia: magnetic fluid hyperthermia (MFH)) and multi-purpose biosensing (e.g. magnetic immunoassays (MIA)). What all of these applications have in common is that they are based on the unique magnetic relaxation mechanisms of MNP in an alternating magnetic field (AMF). While MFH and MPI are currently the most prominent examples of biomedical applications, here we present results on the relatively new biosensing application of frequency mixing magnetic detection (FMMD) from a simulation perspective. In general, we ask how the key parameters of MNP (core size and magnetic anisotropy) affect the FMMD signal: by varying the core size, we investigate the effect of the magnetic volume per MNP; and by changing the effective magnetic anisotropy, we study the MNPs’ flexibility to leave its preferred magnetization direction. From this, we predict the most effective combination of MNP core size and magnetic anisotropy for maximum signal generation. Y1 - 2024 SN - 978-3-940402-65-3 U6 - http://dx.doi.org/10.17185/duepublico/81475 SP - 27 EP - 28 PB - Universität Duisburg-Essen CY - Duisburg ER - TY - JOUR A1 - Eijck, Lambert van A1 - Demmel, Franz A1 - Artmann, Gerhard A1 - Stadtler, Andreas Maximilian T1 - Macromolecular dynamics in red blood cells investigated using neutron spectroscopy JF - Journal of the Royal Society Interface Y1 - 2011 SN - 1742-5689 VL - 8 IS - 57 SP - 590 EP - 600 PB - The Royal Society CY - London ER - TY - JOUR A1 - Karamanidis, Kiros A1 - Albracht, Kirsten A1 - Braunstein, Bjoern A1 - Catala, Maria Moreno A1 - Goldmann, Jan-Peter A1 - Brüggemann, Gert-Peter T1 - Lower leg musculoskeletal geometry and sprint performance JF - Gait and Posture N2 - The purpose of this study was to investigate whether sprint performance is related to lower leg musculoskeletal geometry within a homogeneous group of highly trained 100-m sprinters. Using a cluster analysis, eighteen male sprinters were divided into two groups based on their personal best (fast: N = 11, 10.30 ± 0.07 s; slow: N = 7, 10.70 ± 0.08 s). Calf muscular fascicle arrangement and Achilles tendon moment arms (calculated by the gradient of tendon excursion versus ankle joint angle) were analyzed for each athlete using ultrasonography. Achilles tendon moment arm, foot and ankle skeletal geometry, fascicle arrangement as well as the ratio of fascicle length to Achilles tendon moment arm showed no significant (p > 0.05) correlation with sprint performance, nor were there any differences in the analyzed musculoskeletal parameters between the fast and slow sprinter group. Our findings provide evidence that differences in sprint ability in world-class athletes are not a result of differences in the geometrical design of the lower leg even when considering both skeletal and muscular components. Y1 - 2011 U6 - http://dx.doi.org/10.1016/j.gaitpost.2011.03.009 SN - 0966-6362 VL - 34 IS - 1 SP - 138 EP - 141 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Gasparyan, Ferdinand V. A1 - Poghossian, Arshak A1 - Vitusevich, Svetlana A. A1 - Petrychuk, Mykhaylo V. A1 - Sydoruk, Viktor A. A1 - Siqueira, José R. Jr. A1 - Oliveira, Osvaldo N. Jr. A1 - Offenhäusser, Andreas A1 - Schöning, Michael Josef T1 - Low-Frequency Noise in Field-Effect Devices Functionalized With Dendrimer/Carbon-Nanotube Multilayers JF - IEEE Sensors Journal. 11 (2011), H. 1 Y1 - 2011 SN - 1530-437X SP - 142 EP - 149 PB - IEEE CY - New York ER - TY - JOUR A1 - Gasparyan, F. V. A1 - Poghossian, Arshak A1 - Vitusevich, S. A. A1 - Petrychuk, M. V. A1 - Sydoruk, V. A. A1 - Surmalyan, A. V. A1 - Siqueira, J. R. A1 - Oliveira, O. N. A1 - Offenhäusser, A. A1 - Schöning, Michael Josef T1 - Low Frequency Noise In Electrolyte-Gate Field-Effect Devices Functionalized With Dendrimer/Carbon-Nanotube Multilayers JF - Noise and fluctuations : 20th International Conference on Noise and Fluctuations, ICNF 2009, Pisa, Italy, 14 - 19 June 2009 / ed. Massimo Macucci; Giovanni Basso Y1 - 2009 SN - 9780735406650 N1 - AIP conference proceedings ; 1129 ; International Conference on Noise and Fluctuations ; (20, 2009, Pisa) SP - 133 EP - 136 PB - American Inst. of Physics CY - Melville, NY ER - TY - JOUR A1 - Roeth, A.A. A1 - Slabu, I. A1 - Kessler, A. A1 - Engelmann, Ulrich M. T1 - Local treatment of pancreatic cancer with magnetic nanoparticles JF - HPB Y1 - 2019 U6 - http://dx.doi.org/10.1016/j.hpb.2019.10.959 SN - 1365-182X VL - 21 IS - Supplement 3 SP - S868 EP - S869 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Staat, Manfred T1 - Local and global collapse pressure of longitudinally flawed pipes and cylindrical vessels JF - International Journal of Pressure Vessels and Piping. 82 (2005), H. 3 Y1 - 2005 SN - 0308-0161 SP - 217 EP - 225 ER - TY - JOUR A1 - Staat, Manfred T1 - Local and global collapse pressure of longitudinally flawed pipes and cylindrical vessels N2 - Limit loads can be calculated with the finite element method (FEM) for any component, defect geometry, and loading. FEM suggests that published long crack limit formulae for axial defects under-estimate the burst pressure for internal surface defects in thick pipes while limit loads are not conservative for deep cracks and for pressure loaded crack-faces. Very deep cracks have a residual strength, which is modelled by a global collapse load. These observations are combined to derive new analytical local and global collapse loads. The global collapse loads are close to FEM limit analyses for all crack dimensions. KW - Finite-Elemente-Methode KW - Grenzwertberechnung KW - Axialbelastung KW - FEM KW - Grenzwertberechnung KW - Axialbelastung KW - Traglastanalyse KW - Limit analysis KW - Global and local collapse KW - Axially cracked pipe KW - Pressure loaded crack-face Y1 - 2005 ER - TY - JOUR A1 - Staat, Manfred A1 - Tran, Thanh Ngoc A1 - Kreißig, R. T1 - Load bearing capacity of thin shell structures made of elastoplastic material by direct methods JF - Technische Mechanik. 28 (2008), H. 3-4 Y1 - 2008 SP - 299 EP - 309 ER - TY - CHAP A1 - Bohrn, Ulrich A1 - Stütz, Evamaria A1 - Fleischer, Maximilian A1 - Schöning, Michael Josef A1 - Wagner, Patrick T1 - Living cell-based gas sensor system for the detection of acetone in air Y1 - 2012 SN - 978-3-9813484-2-2 U6 - http://dx.doi.org/10.5162/IMCS2012/3.2.3 SP - 269 EP - 272 ER - TY - JOUR A1 - Ermelenko, Y. A1 - Yoshinobu, T. A1 - Mourzina, Y. A1 - Furuichi, K. A1 - Levichev, S. A1 - Vlasov, Y. A1 - Schöning, Michael Josef A1 - Iwasaki, H. T1 - Lithium sensor based on the laser scanning semiconductor transducer JF - Analytica Chimica Acta. 459 (2002), H. 1 Y1 - 2002 SN - 0378-4304 SP - 1 EP - 9 ER - TY - JOUR A1 - Staat, Manfred T1 - LISA - a European project for FEM-based limit and shakedown analysis N2 - The load-carrying capacity or the safety against plastic limit states are the central questions in the design of structures and passive components in the apparatus engineering. A precise answer is most simply given by limit and shakedown analysis. These methods can be based on static and kinematic theorems for lower and upper bound analysis. Both may be formulated as optimization problems for finite element discretizations of structures. The problems of large-scale analysis and the extension towards realistic material modelling will be solved in a European research project. Limit and shakedown analyses are briefly demonstrated with illustrative examples. KW - Einspielen KW - Traglast KW - Finite-Elemente-Methode KW - Traglastanalyse KW - Einspielanalyse KW - FEM KW - limit analysis KW - shakedown analysis Y1 - 2001 ER - TY - JOUR A1 - Schütz, S. A1 - Weißbecker, G. A1 - Schroth, P. A1 - Schöning, Michael Josef T1 - Linkage of inanimate structures to biological systems – smart materials in biological micro- nanosystems JF - Smart materials : proceedings of the 1st Caesarium, Bonn, November 17 - 19, 1999 / Karl-Heinz Hoffmann ed. Y1 - 2001 SN - 3-540-67957-X SP - 149 EP - 157 PB - Springer CY - Berlin [u.a.] ER - TY - JOUR A1 - Schäfer, Horst A1 - Worschech, L. A1 - Fischer, C. A1 - Schenk, H. (u.a.) T1 - Linearly Polarized Luminescence associated with Structural Defects in MBE grown ZnSe JF - Blue laser and light emitting diodes : [International Symposium on Blue Laser and Light Emitting Diodes (ISBLLED), Chiba, Japan , March 5 - 7, 1996] / ed. by A. Yoshikawa Y1 - 1996 SN - 4-274-90096-7 SP - 421 EP - 424 PB - Ohmsha [u.a.] CY - Tokyo ER -