TY - CHAP A1 - Engel, M. A1 - Thieringer, J. A1 - Tippkötter, Nils T1 - Microbial electrosynthesis for sustainable biobutanol production T2 - New frontiers of biotech-processes (Himmelfahrtstagung) : 02-04 May 2016, Rhein-Mosel-Halle, Koblenz/Germany Y1 - 2016 SP - 77 EP - 78 PB - DECHEMA CY - Frankfurt am Main ER - TY - JOUR A1 - Molinnus, Denise A1 - Sorich, Maren A1 - Bartz, Alexander A1 - Siegert, Petra A1 - Willenberg, Holger S. A1 - Lisdat, Fred A1 - Poghossian, Arshak A1 - Keusgen, Michael A1 - Schöning, Michael Josef T1 - Towards an adrenaline biosensor based on substrate recycling amplification in combination with an enzyme logic gate JF - Sensors and Actuators B: Chemical N2 - An amperometric biosensor using a substrate recycling principle was realized for the detection of low adrenaline concentrations (1 nM) by measurements in phosphate buffer and Ringer’s solution at pH 6.5 and pH 7.4, respectively. In proof-of-concept experiments, a Boolean logic-gate principle has been applied to develop a digital adrenaline biosensor based on an enzyme AND logic gate. The obtained results demonstrate that the developed digital biosensor is capable for a rapid qualitative determination of the presence/absence of adrenaline in a YES/NO statement. Such digital biosensor could be used in clinical diagnostics for the control of a correct insertion of a catheter in the adrenal veins during adrenal venous-sampling procedure. Y1 - 2016 U6 - https://doi.org/10.1016/j.snb.2016.06.064 SN - 0925-4005 VL - 237 SP - 190 EP - 195 PB - Elsevier CY - Amsterdam ER - TY - GEN A1 - Möhring, S. A1 - Wulfhorst, H. A1 - Capitain, C. A1 - Roth, J. A1 - Tippkötter, Nils T1 - Fractioning of lignocellulosic biomass: Scale-down and automation of thermal pretreatment for parameter optimization T2 - Chemie Ingenieur Technik N2 - In order to efficiently convert lignocellulose, it is often necessary to conduct a pretreatment. The biomass considered in this study typically comprises of agricultural and horticultural residues, as well as beechwood. A very environmentally friendly method, namely, fungal pretreatment using white-rot fungi, leads to an enhanced enzymatic hydrolysis. In contrast to other processes presented, the energy input is extremely low. However, the fungal growth on the lignocellulosic substrates takes several weeks at least in order to be effective. Thus, the reduction of chemicals and energy for thermal processing is a target of our current research. Liquid hot water (LHW) and solvent-based pretreatment (OrganoSolv) require more complex equipment, as they depend on high temperatures (160 – 180 °C) and enhanced pressure (up to 20 bar). However, they prove to be promising processes in regard to the fractioning of lignocellulose. For optimal lignin recovery the parameters differ from those established in cellulose extraction. A novel screening system scaled down to a reaction volume of 100 mL has been developed and successfully tested for this purpose. Y1 - 2016 U6 - https://doi.org/10.1002/cite.201650288 SN - 0009-286X SN - 1522-2640 (eISSN) N1 - ProcessNet-Jahrestagung und 32. DECHEMA-Jahrestagung der Biotechnologen 2016, 12. - 15. September 2016, Eurogress Aachen VL - 88 IS - 9 SP - 1229 PB - Wiley-VCH CY - Weinheim ER - TY - CHAP A1 - Engel, Mareike A1 - Thieringer, Julia A1 - Tippkötter, Nils T1 - Linking bioprocess engineering and electrochemistry for sustainable biofuel production T2 - Young Researchers Symposium, YRS 2016. Proceedings N2 - Electromicrobial engineering is an emerging, highly interdisciplinary research area linking bioprocesses with electrochemistry. In this work, microbial electrosynthesis (MES) of biobutanol is carried out during acetone-butanol-ethanol (ABE) fermentations with Clostridium acetobutylicum. A constant electric potential of −600mV (vs. Ag/AgCl) with simultaneous addition of the soluble redox mediator neutral red is used in order to study the electron transfer between the working electrode and the bacterial cells. The results show an earlier initiation of solvent production for all fermentations with applied potential compared to the conventional ABE fermentation. The f inal butanol concentration can be more than doubled by the application of a negative potential combined with addition of neutral red. Moreover a higher biofilm formation on the working electrode compared to control cultivations has been observed. In contrast to previous studies, our results also indicate that direct electron transfer (DET) might be possible with C. acetobutylicum. The presented results make microbial butanol production economically attractive and therefore support the development of sustainable production processes in the chemical industry aspired by the “Centre for resource-efficient chemistry and raw material change” as well as the the project “NanoKat” working on nanostructured catalysts in Kaiserslautern. Y1 - 2016 N1 - Young Researchers Symposium, YRS 2016, 14th - 15th April 2016, Fraunhofer-Zentrum Kaiserslautern SP - 49 EP - 53 PB - Fraunhofer Verlag CY - Karlsruhe ER - TY - JOUR A1 - Zhang, Jin A1 - Heimbach, Tycho A1 - Scheer, Nico A1 - Barve, Avantika A1 - Li, Wenkui A1 - Lin, Wen A1 - He, Handan T1 - Clinical Exposure Boost Predictions by Integrating Cytochrome P450 3A4–Humanized Mouse Studies With PBPK Modeling JF - Journal of Pharmaceutical Sciences N2 - NVS123 is a poorly water-soluble protease 56 inhibitor in clinical development. Data from in vitro hepatocyte studies suggested that NVS123 is mainly metabolized by CYP3A4. As a consequence of limited solubility, NVS123 therapeutic plasma exposures could not be achieved even with high doses and optimized formulations. One approach to overcome NVS123 developability issues was to increase plasma exposure by coadministrating it with an inhibitor of CYP3A4 such as ritonavir. A clinical boost effect was predicted by using physiologically based pharmacokinetic (PBPK) modeling. However, initial boost predictions lacked sufficient confidence because a key parameter, fraction of drug metabolized by CYP3A4 (ƒₘCYP3A4), could not be estimated with accuracy on account of disconnects between in vitro and in vivo preclinical data. To accurately estimate ƒₘCYP3A4 in human, an in vivo boost effect study was conducted using CYP3A4-humanized mouse model which showed a 33- to 56-fold exposure boost effect. Using a top-down approach, human ƒₘCYP3A4 for NVS123 was estimated to be very high and included in the human PBPK modeling to support subsequent clinical study design. The combined use of the in vivo boost study in CYP3A4-humanized mouse model mice along with PBPK modeling accurately predicted the clinical outcome and identified a significant NVS123 exposure boost (∼42-fold increase) with ritonavir. Y1 - 2016 U6 - https://doi.org/doi.org/10.1016/j.xphs.2016.01.021 SN - 0022-3549 VL - Volume 105 IS - Issue 4 SP - 1398 EP - 1404 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Dallas, Shannon A1 - Salphati, Laurent A1 - Gomez-Zepeda, David A1 - Wanek, Thomas A1 - Chen, Liangfu A1 - Chu, Xiaoyan A1 - Kunta, Jeevan A1 - Mezler, Mario A1 - Menet, Marie-Claude A1 - Chasseigneaux, Stephanie A1 - Declèves, Xavier A1 - Langer, Oliver A1 - Pierre, Esaie A1 - DiLoreto, Karen A1 - Hoft, Carolin A1 - Laplanche, Loic A1 - Pang, Jodie A1 - Pereira, Tony A1 - Andonian, Clara A1 - Simic, Damir A1 - Rode, Anja A1 - Yabut, Jocelyn A1 - Zhang, Xiaolin A1 - Scheer, Nico T1 - Generation and Characterization of a Breast Cancer Resistance Protein Humanized Mouse Model JF - Molecular Pharmacology N2 - Breast cancer resistance protein (BCRP) is expressed in various tissues, such as the gut, liver, kidney and blood brain barrier (BBB), where it mediates the unidirectional transport of substrates to the apical/luminal side of polarized cells. Thereby BCRP acts as an efflux pump, mediating the elimination or restricting the entry of endogenous compounds or xenobiotics into tissues and it plays important roles in drug disposition, efficacy and safety. Bcrp knockout mice (Bcrp−/−) have been used widely to study the role of this transporter in limiting intestinal absorption and brain penetration of substrate compounds. Here we describe the first generation and characterization of a mouse line humanized for BCRP (hBCRP), in which the mouse coding sequence from the start to stop codon was replaced with the corresponding human genomic region, such that the human transporter is expressed under control of the murine Bcrp promoter. We demonstrate robust human and loss of mouse BCRP/Bcrp mRNA and protein expression in the hBCRP mice and the absence of major compensatory changes in the expression of other genes involved in drug metabolism and disposition. Pharmacokinetic and brain distribution studies with several BCRP probe substrates confirmed the functional activity of the human transporter in these mice. Furthermore, we provide practical examples for the use of hBCRP mice to study drug-drug interactions (DDIs). The hBCRP mouse is a promising model to study the in vivo role of human BCRP in limiting absorption and BBB penetration of substrate compounds and to investigate clinically relevant DDIs involving BCRP. Y1 - 2016 U6 - https://doi.org/10.1124/mol.115.102079 SN - 1521-0111 VL - 89 IS - 5 SP - 492 EP - 504 PB - ASPET CY - Bethesda, Md. ER - TY - JOUR A1 - Rösch, C. A1 - Kratz, F. A1 - Hering, T. A1 - Trautmann, S. A1 - Umanskaya, N. A1 - Tippkötter, Nils A1 - Müller-Renno, C.M. A1 - Ulber, Roland A1 - Hannig, M. A1 - Ziegler, C. T1 - Albumin-lysozyme interactions: cooperative adsorption on titanium and enzymatic activity JF - Colloids and Surfaces B: Biointerfaces N2 - The interplay of albumin (BSA) and lysozyme (LYZ) adsorbed simultaneously on titanium was analyzed by gel electrophoresis and BCA assay. It was found that BSA and lysozyme adsorb cooperatively. Additionally, the isoelectric point of the respective protein influences the adsorption. Also, the enzymatic activity of lysozyme and amylase (AMY) in mixtures with BSA was considered with respect to a possible influence of protein-protein interaction on enzyme activity. Indeed, an increase of lysozyme activity in the presence of BSA could be observed. In contrast, BSA does not influence the activity of amylase. Y1 - 2016 U6 - https://doi.org/10.1016/j.colsurfb.2016.09.048 VL - 149 IS - 1 SP - 115 EP - 121 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Wulfhorst, Helene A1 - Duwe, Anna-Maria A1 - Merseburg, Johannes A1 - Tippkötter, Nils T1 - Compositional analysis of pretreated (beech) wood using differential scanning calorimetry and multivariate data analysis JF - Tetrahedron N2 - The composition of plant biomass varies depending on the feedstock and pre-treatment conditions and influences its processing in biorefineries. In order to ensure optimal process conditions, the quantitative proportion of the main polymeric components of the pre-treated biomass has to be determined. Current standard procedures for biomass compositional analysis are complex, the measurements are afflicted with errors and therefore often not comparable. Hence, new powerful analytical methods are urgently required to characterize biomass. In this contribution, Differential Scanning Calorimetry (DSC) was applied in combination with multivariate data analysis (MVA) to detect the cellulose content of the plant biomass pretreated by Liquid Hot Water (LHW) and Organosolv processes under various conditions. Unlike conventional techniques, the developed analytic method enables the accurate quantification of monosaccharide content of the plant biomass without any previous sample preparation. It is easy to handle and avoids errors in sample preparation. Y1 - 2016 U6 - https://doi.org/10.1016/j.tet.2016.04.029 VL - 72 IS - 46 SP - 7329 EP - 7334 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Roth, Jasmine A1 - Tippkötter, Nils T1 - Evaluation of lignocellulosic material for butanol production using enzymatic hydrolysate medium JF - Cellulose Chemistry and Technology N2 - Butanol is a promising gasoline additive and platform chemical that can be readily produced via acetone-butanolethanol (ABE) fermentation from pretreated lignocellulosic materials. This article examines lignocellulosic material from beech wood for ABE fermentation, using Clostridium acetobutylicum. First, the utilization of both C₅₋ (xylose) and C₆₋ (glucose) sugars as sole carbon source was investigated in static cultivation, using serum bottles and synthetic medium. The utilization of pentose sugar resulted in a solvent yield of 0.231 g·g_sugar⁻¹, compared to 0.262 g·g_sugar⁻¹ using hexose. Then, the Organosolv pretreated crude cellulose fibers (CF) were enzymatically decomposed, and the resulting hydrolysate medium was analyzed for inhibiting compounds (furans, organic acids, phenolics) and treated with ionexchangers for detoxification. Batch fermentation in a bioreactor using CF hydrolysate medium resulted in a total solvent yield of 0.20 gABE·g_sugar⁻¹. Y1 - 2016 VL - 50 IS - 3-4 SP - 405 EP - 410 PB - Editura Academiei Romane CY - Bukarest ER - TY - GEN A1 - Roth, J. A1 - Tippkötter, Nils T1 - New Approach for Enzymatic Hydrolysis of Lignocellulose with Selective Diffusion Separation of the Monosaccharide Products T2 - Chemie Ingenieur Technik N2 - Enzymatic hydrolysis of lignocellulosic material plays an important role in the classical biorefinery approach. Apart from the pretreatment of the raw material, hydrolysis is the basis for the conversion of the cellulose and hemicellulose fraction into fermentable sugars. After hydrolysis, usually a solid-liquid separation takes place, in order to separate the residual plant material from the sugar-rich fraction, which can be subsequently used in a fermentation step. In order to factor out the separation step, the usage of in alginate immobilized crude cellulose fiber beads (CFBs) were evaluated. Pretreated cellulose fibers are incorporated in an alginate matrix together with the relevant enzymes. In doing so, sugars diffuse trough the alginate matrix, allowing a simplified delivery into the surrounding fluid. This again reduces product inhibition of the glucose on the enzyme catalysts. By means of standardized bead production the hydrolysis in lab scale was possible. First results show that liberation of glucose and xylose is possible, allowing a maximum total sugar yield of 75 %. Y1 - 2016 U6 - https://doi.org/10.1002/cite.201650301 SN - 0009-286X SN - 1522-2640 (eISSN) N1 - ProcessNet-Jahrestagung 2016 und 32. DECHEMA-Jahrestagung der Biotechnologen 2016, 12. - 15. September 2016, Eurogress Aachen VL - 88 IS - 9 SP - 1237 PB - Wiley-VCH CY - Weinheim ER - TY - CHAP A1 - Samuelsson, K. A1 - Scheer, Nico A1 - Wilson, I. A1 - Wolf, C.R. A1 - Henderson, C.J. ED - Chackalamannil, Samuel T1 - Genetically Humanized Animal Models T2 - Comprehensive Medicinal Chemistry III. 3rd Edition N2 - Genetically humanized mice for proteins involved in drug metabolism and toxicity and mice engrafted with human hepatocytes are emerging as promising in vivo models for improved prediction of the pharmacokinetic, drug–drug interaction, and safety characteristics of compounds in humans. This is an overview on the genetically humanized and chimeric liver-humanized mouse models, which are illustrated with examples of their utility in drug metabolism and toxicity studies. The models are compared to give guidance for selection of the most appropriate model by highlighting advantages and disadvantages to be carefully considered when used for studies in drug discovery and development. KW - Chimeric liver-humanized mice KW - Drug distribution KW - Drug metabolism KW - Toxicology KW - Knockout mice Y1 - 2017 SN - 978-0-12-803201-5 U6 - https://doi.org/10.1016/B978-0-12-409547-2.12376-5 SP - 130 EP - 149 PB - Elsevier CY - Saint Louis ER - TY - JOUR A1 - Liu, Z. A1 - Schaap, K. S. A1 - Ballemans, L. A1 - de Blois, E. A1 - Rohde, M. A1 - Paulßen, Elisabeth T1 - Measurement of reaction kinetics of [177Lu]Lu-DOTA-TATE using a microfluidic system JF - Dalton Transactions Y1 - 2017 U6 - https://doi.org/10.1039/C7DT01830D SN - 1477-9234 VL - 46 IS - 42 SP - 14669 EP - 14676 ER - TY - JOUR A1 - Röhlen, Desiree A1 - Pilas, Johanna A1 - Schöning, Michael Josef A1 - Selmer, Thorsten T1 - Development of an amperometric biosensor platform for the combined determination of l-Malic, Fumaric, and l-Aspartic acid JF - Applied Biochemistry and Biotechnology N2 - Three amperometric biosensors have been developed for the detection of L-malic acid, fumaric acid, and L -aspartic acid, all based on the combination of a malate-specific dehydrogenase (MDH, EC 1.1.1.37) and diaphorase (DIA, EC 1.8.1.4). The stepwise expansion of the malate platform with the enzymes fumarate hydratase (FH, EC 4.2.1.2) and aspartate ammonia-lyase (ASPA, EC 4.3.1.1) resulted in multi-enzyme reaction cascades and, thus, augmentation of the substrate spectrum of the sensors. Electrochemical measurements were carried out in presence of the cofactor β-nicotinamide adenine dinucleotide (NAD+) and the redox mediator hexacyanoferrate (III) (HCFIII). The amperometric detection is mediated by oxidation of hexacyanoferrate (II) (HCFII) at an applied potential of + 0.3 V vs. Ag/AgCl. For each biosensor, optimum working conditions were defined by adjustment of cofactor concentrations, buffer pH, and immobilization procedure. Under these improved conditions, amperometric responses were linear up to 3.0 mM for L-malate and fumarate, respectively, with a corresponding sensitivity of 0.7 μA mM−1 (L-malate biosensor) and 0.4 μA mM−1 (fumarate biosensor). The L-aspartate detection system displayed a linear range of 1.0–10.0 mM with a sensitivity of 0.09 μA mM−1. The sensor characteristics suggest that the developed platform provides a promising method for the detection and differentiation of the three substrates. Y1 - 2017 U6 - https://doi.org/10.1007/s12010-017-2578-1 SN - 1559-0291 VL - 183 SP - 566 EP - 581 PB - Springer CY - Berlin ER - TY - JOUR A1 - Pilas, Johanna A1 - Yazici, Yasemen A1 - Selmer, Thorsten A1 - Keusgen, Michael A1 - Schöning, Michael Josef T1 - Optimization of an amperometric biosensor array for simultaneous measurement of ethanol, formate, d- and l-lactate JF - Electrochimica Acta N2 - The immobilization of NAD+-dependent dehydrogenases, in combination with a diaphorase, enables the facile development of multiparametric sensing devices. In this work, an amperometric biosensor array for simultaneous determination of ethanol, formate, d- and l-lactate is presented. Enzyme immobilization on platinum thin-film electrodes was realized by chemical cross-linking with glutaraldehyde. The optimization of the sensor performance was investigated with regard to enzyme loading, glutaraldehyde concentration, pH, cofactor concentration and temperature. Under optimal working conditions (potassium phosphate buffer with pH 7.5, 2.5 mmol L-1 NAD+, 2.0 mmol L-1 ferricyanide, 25 °C and 0.4% glutaraldehyde) the linear working range and sensitivity of the four sensor elements was improved. Simultaneous and cross-talk free measurements of four different metabolic parameters were performed successfully. The reliable analytical performance of the biosensor array was demonstrated by application in a clarified sample of inoculum sludge. Thereby, a promising approach for on-site monitoring of fermentation processes is provided. KW - Simultaneous determination KW - Enzymatic biosensor KW - Diaphorase KW - Dehydrogenase Y1 - 2017 U6 - https://doi.org/10.1016/j.electacta.2017.07.119 SN - 0013-4686 VL - 251 SP - 256 EP - 262 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Breuer, Lars A1 - Mang, Thomas A1 - Schöning, Michael Josef A1 - Thoelen, Ronald A1 - Wagner, Torsten T1 - Investigation of the spatial resolution of a laser-based stimulation process for light-addressable hydrogels with incorporated graphene oxide by means of IR thermography JF - Sensors and Actuators A: Physical Y1 - 2017 U6 - https://doi.org/10.1016/j.sna.2017.11.031 SN - 0924-4247 VL - 268 SP - 126 EP - 132 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Demmer, Julius K. A1 - Chowdhury, Nilanjan Pal A1 - Selmer, Thorsten A1 - Ermler, Ulrich A1 - Buckel, Wolfgang T1 - The semiquinone swing in the bifurcating electron transferring flavoprotein/butyryl-CoA dehydrogenase complex from Clostridium difficile JF - Nature Communications Y1 - 2017 U6 - https://doi.org/10.1038/s41467-017-01746-3 SN - 2041-1723 N1 - Article number 1577 VL - 8 IS - 1 SP - 1 EP - 10 ER - TY - JOUR A1 - Werkhausen, Amelie A1 - Albracht, Kirsten A1 - Cronin, Neil J. A1 - Meier, Rahel A1 - Mojsen-Moeller, Jens A1 - Seynnes, Olivier R. T1 - Modulation of muscle-tendon interaction in the human triceps surae during an energy dissipation task JF - Journal of Experimental Biology Y1 - 2017 U6 - https://doi.org/10.1242/jeb.164111 SN - 0022-0949 VL - 220 IS - 22 SP - 4141 EP - 4149 ER - TY - JOUR A1 - Meyer, Jan A1 - Hentschke, Reinhard A1 - Hager, Jonathan A1 - Hojdis, Nils A1 - Karimi-Varzaneh, Hossein Ali T1 - Molecular Simulation of Viscous Dissipation due to Cyclic Deformation of a Silica–Silica Contact in Filled Rubber JF - Macromolecules Y1 - 2017 U6 - https://doi.org/10.1021/acs.macromol.7b00947 SN - 1520-5835 VL - 50 IS - 17 SP - 6679 EP - 6689 ER - TY - JOUR A1 - Mayer, Jan A1 - Hentschke, Reinhard A1 - Hager, Jonathan A1 - Hojdis, Nils A1 - Karimi-Varnaneh, Hossein Ali T1 - A Nano-Mechanical Instability as Primary Contribution to Rolling Resistance JF - Scientific Reports Y1 - 2017 SN - 2045-2322 VL - 7 IS - Article number 11275 PB - Springer CY - Berlin ER - TY - JOUR A1 - Muschallik, Lukas A1 - Molinnus, Denise A1 - Bongaerts, Johannes A1 - Pohl, Martina A1 - Wagner, Torsten A1 - Schöning, Michael Josef A1 - Siegert, Petra A1 - Selmer, Thorsten T1 - (R,R)-Butane-2,3-diol Dehydrogenase from Bacillus clausii DSM 8716T: Cloning and Expression of the bdhA-Gene, and Initial Characterization of Enzyme JF - Journal of Biotechnology N2 - The gene encoding a putative (R,R)-butane-2,3-diol dehydrogenase (bdhA) from Bacillus clausii DSM 8716T was isolated, sequenced and expressed in Escherichia coli. The amino acid sequence of the encoded protein is only distantly related to previously studied enzymes (identity 33–43%) and exhibited some uncharted peculiarities. An N-terminally StrepII-tagged enzyme variant was purified and initially characterized. The isolated enzyme catalyzed the (R)-specific oxidation of (R,R)- and meso-butane-2,3-diol to (R)- and (S)-acetoin with specific activities of 12 U/mg and 23 U/mg, respectively. Likewise, racemic acetoin was reduced with a specific activity of up to 115 U/mg yielding a mixture of (R,R)- and meso-butane-2,3-diol, while the enzyme reduced butane-2,3-dione (Vmax 74 U/mg) solely to (R,R)-butane-2,3-diol via (R)-acetoin. For these reactions only activity with the co-substrates NADH/NAD+ was observed. The enzyme accepted a selection of vicinal diketones, α-hydroxy ketones and vicinal diols as alternative substrates. Although the physiological function of the enzyme in B. clausii remains elusive, the data presented herein clearly demonstrates that the encoded enzyme is a genuine (R,R)-butane-2,3-diol dehydrogenase with potential for applications in biocatalysis and sensor development. Y1 - 2017 U6 - https://doi.org/10.1016/j.jbiotec.2017.07.020 SN - 0168-1656 VL - 258 SP - 41 EP - 50 PB - Elsevier CY - Amsterdam ER -