TY - JOUR A1 - Muschallik, Lukas A1 - Molinnus, Denise A1 - Bongaerts, Johannes A1 - Pohl, Martina A1 - Wagner, Torsten A1 - Schöning, Michael Josef A1 - Siegert, Petra A1 - Selmer, Thorsten T1 - (R,R)-Butane-2,3-diol Dehydrogenase from Bacillus clausii DSM 8716T: Cloning and Expression of the bdhA-Gene, and Initial Characterization of Enzyme JF - Journal of Biotechnology N2 - The gene encoding a putative (R,R)-butane-2,3-diol dehydrogenase (bdhA) from Bacillus clausii DSM 8716T was isolated, sequenced and expressed in Escherichia coli. The amino acid sequence of the encoded protein is only distantly related to previously studied enzymes (identity 33–43%) and exhibited some uncharted peculiarities. An N-terminally StrepII-tagged enzyme variant was purified and initially characterized. The isolated enzyme catalyzed the (R)-specific oxidation of (R,R)- and meso-butane-2,3-diol to (R)- and (S)-acetoin with specific activities of 12 U/mg and 23 U/mg, respectively. Likewise, racemic acetoin was reduced with a specific activity of up to 115 U/mg yielding a mixture of (R,R)- and meso-butane-2,3-diol, while the enzyme reduced butane-2,3-dione (Vmax 74 U/mg) solely to (R,R)-butane-2,3-diol via (R)-acetoin. For these reactions only activity with the co-substrates NADH/NAD+ was observed. The enzyme accepted a selection of vicinal diketones, α-hydroxy ketones and vicinal diols as alternative substrates. Although the physiological function of the enzyme in B. clausii remains elusive, the data presented herein clearly demonstrates that the encoded enzyme is a genuine (R,R)-butane-2,3-diol dehydrogenase with potential for applications in biocatalysis and sensor development. Y1 - 2017 U6 - http://dx.doi.org/10.1016/j.jbiotec.2017.07.020 SN - 0168-1656 VL - 258 SP - 41 EP - 50 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Dantism, Shahriar A1 - Takenaga, Shoko A1 - Wagner, Torsten A1 - Wagner, Patrick A1 - Schöning, Michael Josef T1 - Differential imaging of the metabolism of bacteria and eukaryotic cells based on light-addressable potentiometric sensors JF - Electrochimica Acta N2 - A light-addressable potentiometric sensor (LAPS) is a field-effect-based potentiometric sensor with an electrolyte/insulator/semiconductor (EIS) structure, which is able to monitor analyte concentrations of (bio-)chemical species in aqueous solutions in a spatially resolved way. Therefore, it is also an appropriate tool to record 2D-chemical images of concentration variations on the sensor surface. In the present work, two differential, LAPS-based measurement principles are introduced to determine the metabolic activity of Escherichia coli (E. coli) K12 and Chinese hamster ovary (CHO) cells as test microorganisms. Hereby, we focus on i) the determination of the extracellular acidification rate (ΔpH/min) after adding glucose solutions to the cell suspensions; and ii) recording the amplitude increase of the photocurrent (Iph) related to the produced acids from E. coli K12 bacteria and CHO cells on the sensor surface by 2D-chemical imaging. For this purpose, 3D-printed multi-chamber structures were developed and mounted on the planar sensor-chip surface to define four independent compartments, enabling differential measurements with varying cell concentrations. The differential concept allows eliminating unwanted drift effects and, with the four-chamber structures, measurements on the different cell concentrations were performed simultaneously, thus reducing also the overall measuring time. Y1 - 2017 U6 - http://dx.doi.org/10.1016/j.electacta.2017.05.196 SN - 0013-4686 VL - 246 SP - 234 EP - 241 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Jildeh, Zaid B. A1 - Kirchner, Patrick A1 - Oberländer, Jan A1 - Kremers, Alexander A1 - Wagner, Torsten A1 - Wagner, Patrick H. A1 - Schöning, Michael Josef T1 - FEM-based modeling of a calorimetric gas sensor for hydrogen peroxide monitoring JF - physica status solidi a : applications and materials sciences N2 - A physically coupled finite element method (FEM) model is developed to study the response behavior of a calorimetric gas sensor. The modeled sensor serves as a monitoring device of the concentration of gaseous hydrogen peroxide (H2 O2) in a high temperature mixture stream in aseptic sterilization processes. The principle of operation of a calorimetric H2 O2 sensor is analyzed and the results of the numerical model have been validated by using previously published sensor experiments. The deviation in the results between the FEM model and experimental data are presented and discussed. Y1 - 2017 U6 - http://dx.doi.org/10.1002/pssa.201600912 SN - 1862-6319 IS - Early View PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Miyamoto, Ko-ichiro A1 - Hayashi, Kosuke A1 - Sakamoto, Azuma A1 - Werner, Frederik A1 - Wagner, Torsten A1 - Schöning, Michael Josef A1 - Yoshinobu, Tatsuo T1 - A high-Q resonance-mode measurement of EIS capacitive sensor by elimination of series resistance JF - Sensor and Actuators B: Chemical N2 - An EIS capacitive sensor is a semiconductor-based potentiometric sensor, which is sensitive to the ion concentration or pH value of the solution in contact with the sensing surface. To detect a small change in the ion concentration or pH, a small capacitance change must be detected. Recently, a resonance-mode measurement was proposed, in which an inductor was connected to the EIS capacitive sensor and the resonant frequency was correlated with the pH value. In this study, the Q factor of the resonant circuit was enhanced by canceling the internal resistance of the reference electrode and the internal resistance of the inductor coil with the help of a bypass capacitor and a negative impedance converter, respectively. 1% variation of the signal in the developed system corresponded to a pH change of 3.93 mpH, which was about 1/12 of the conventional method, suggesting a better performance in detection of a small pH change. KW - Negative impedance convertor KW - Resonance-mode measurement KW - Chemical sensor KW - EIS capacitive sensor Y1 - 2017 U6 - http://dx.doi.org/10.1016/j.snb.2017.03.002 SN - 0925-4005 VL - 248 SP - 1006 EP - 1010 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Werner, Frederik A1 - Miyamoto, Ko-ichiro A1 - Wagner, Torsten A1 - Schöning, Michael Josef A1 - Yoshinobu, Tatsuo T1 - Lateral resolution enhancement of pulse-driven light-addressable potentiometric sensor JF - Sensor and Actuators B: Chemical N2 - To study chemical and biological processes, spatially resolved determination of the concentrations of one or more analyte species is of distinct interest. With a light-addressable potentiometric sensor (LAPS), chemical images can be created, which visualize the concentration distribution above the sensor plate. One important challenge is to achieve a good lateral resolution in order to detect events that take place in a small and limited region. LAPS utilizes a focused light spot to address the measurement region. By moving this light spot along the semiconductor sensor plate, the concentration distribution can be observed. In this study, we show that utilizing a pulse as light excitation instead of a traditionally used continuously modulated light excitation, the lateral resolution can be improved by a factor of 6 or more. KW - Chemical images KW - LAPS KW - Light-addressable potentiometric sensor Y1 - 2017 U6 - http://dx.doi.org/10.1016/j.snb.2017.02.057 SN - 0925-4005 VL - 248 SP - 961 EP - 965 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Breuer, Lars A1 - Mang, Thomas A1 - Schöning, Michael Josef A1 - Thoelen, Ronald A1 - Wagner, Torsten T1 - Investigation of the spatial resolution of a laser-based stimulation process for light-addressable hydrogels with incorporated graphene oxide by means of IR thermography JF - Sensors and Actuators A: Physical Y1 - 2017 U6 - http://dx.doi.org/10.1016/j.sna.2017.11.031 SN - 0924-4247 VL - 268 SP - 126 EP - 132 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Miyamoto, Ko-ichiro A1 - Yu, Bing A1 - Isoda, Hiroko A1 - Wagner, Torsten A1 - Schöning, Michael Josef A1 - Yoshinobu, Tatsuo T1 - Visualization of the recovery process of defects in a cultured cell layer by chemical imaging sensor JF - Sensors and Actuators B: Chemical N2 - The chemical imaging sensor is a field-effect sensor which is able to visualize both the distribution of ions (in LAPS mode) and the distribution of impedance (in SPIM mode) in the sample. In this study, a novel cell assay is proposed, in which the chemical imaging sensor operated in SPIM mode is applied to monitor the recovery of defects in a cell layer brought into proximity of the sensing surface. A reduced impedance at a defect formed artificially in a cell layer was successfully visualized in a photocurrent image. The cell layer was cultured over two weeks, during which the temporal change of the photocurrent distribution corresponding to the recovery of the defect was observed. Y1 - 2016 U6 - http://dx.doi.org/10.1016/j.snb.2016.04.018 SN - 0925-4005 VL - 236 SP - 965 EP - 969 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Dantism, Shahriar A1 - Takenaga, Shoko A1 - Wagner, Patrick A1 - Wagner, Torsten A1 - Schöning, Michael Josef T1 - Determination of the extracellular acidification of Escherichia coli K12 with a multi-​chamber-​based LAPS system JF - Physica status solidi (a) N2 - On-line monitoring of the metabolic activity of microorganisms involved in intermediate stages of biogas production plays an important role to avoid undesirable “down times” during the biogas production. In order to control this process, an on-chip differential measuring system based on the light-addressable potentiometric sensor (LAPS) principle combined with a 3D-printed multi-chamber structure has been realized. As a test microorganism, Escherichia coli K12 (E. coli K12) were used for cell-based measurements. Multi-chamber structures were developed to determine the metabolic activity of E. coli K12 in suspension for a different number of cells, responding to the addition of a constant or variable amount of glucose concentrations, enabling differential and simultaneous measurements. Y1 - 2016 U6 - http://dx.doi.org/10.1002/pssa.201533043 SN - 1862-6300 VL - 213 IS - 6 SP - 1479 EP - 1485 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Breuer, Lars A1 - Raue, Markus A1 - Strobel, M. A1 - Mang, Thomas A1 - Schöning, Michael Josef A1 - Thoelen, R. A1 - Wagner, Torsten T1 - Hydrogels with incorporated graphene oxide as light-addressable actuator materials for cell culture environments in lab-on-chip systems JF - Physica status solidi (a) N2 - Abstractauthoren Graphene oxide (GO) nanoparticles were incorporated in temperature-sensitive Poly(N-isopropylacrylamide) (PNIPAAm) hydrogels. The nanoparticles increase the light absorption and convert light energy into heat efficiently. Thus, the hydrogels with GO can be stimulated spatially resolved by illumination as it was demonstrated by IR thermography. The temporal progression of the temperature maximum was detected for different concentrations of GO within the polymer network. Furthermore, the compatibility of PNIPAAm hydrogels with GO and cell cultures was investigated. For this purpose, culture medium was incubated with hydrogels containing GO and the viability and morphology of chinese hamster ovary (CHO) cells was examined after several days of culturing in presence of this medium. Y1 - 2016 U6 - http://dx.doi.org/10.1002/pssa.201533056 SN - 1862-6300 VL - 213 IS - 6 SP - 1520 EP - 1525 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Wagner, Torsten A1 - Vornholt, Wolfgang A1 - Werner, Frederik A1 - Yoshinobu, Tatsuo A1 - Miyamoto, Ko-Ichiro A1 - Keusgen, Michael A1 - Schöning, Michael Josef T1 - Light-addressable potentiometric sensor (LAPS) combined with magnetic beads for pharmaceutical screening JF - Physics in medicine N2 - The light-addressable potentiometric sensor (LAPS) has the unique feature to address different regions of a sensor surface without the need of complex structures. Measurements at different locations on the sensor surface can be performed in a common analyte solution, which distinctly simplifies the fluidic set-up. However, the measurement in a single analyte chamber prevents the application of different drugs or different concentrations of a drug to each measurement spot at the same time as in the case of multi-reservoir-based set-ups. In this work, the authors designed a LAPS-based set-up for cell culture screening that utilises magnetic beads loaded with the endotoxin (lipopolysaccharides, LPS), to generate a spatially distributed gradient of analyte concentration. Different external magnetic fields can be adjusted to move the magnetic beads loaded with a specific drug within the measurement cell. By recording the metabolic activities of a cell layer cultured on top of the LAPS surface, this work shows the possibility to apply different concentrations of a sample along the LAPS measurement spots within a common analyte solution. Y1 - 2016 U6 - http://dx.doi.org/10.1016/j.phmed.2016.03.001 SN - 2352-4510 VL - 2016 IS - 1 SP - 2 EP - 7 ER - TY - JOUR A1 - Doll, Theodor A1 - Wagner, Torsten A1 - Wagner, Patrick A1 - Schöning, Michael Josef T1 - Engineering of functional interfaces / Theodor Doll ; Torsten Wagner ; Patrick Wagner ; Michael J. Schöning (eds.) JF - Physica status solidi (a) Y1 - 2016 U6 - http://dx.doi.org/10.1002/pssa.201670641 SN - 1862-6319 VL - 213 IS - 6 SP - 1393 EP - 1394 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Miyamoto, Ko-Ichiro A1 - Sato, Takuya A1 - Abe, Minami A1 - Wagner, Torsten A1 - Schöning, Michael Josef A1 - Yoshinobu, Tatsuo T1 - Light-addressable potentiometric sensor as a sensing element in plug-based microfluidic devices JF - Micromachines N2 - A plug-based microfluidic system based on the principle of the light-addressable potentiometric sensor (LAPS) is proposed. The LAPS is a semiconductor-based chemical sensor, which has a free addressability of the measurement point on the sensing surface. By combining a microfluidic device and LAPS, ion sensing can be performed anywhere inside the microfluidic channel. In this study, the sample solution to be measured was introduced into the channel in a form of a plug with a volume in the range of microliters. Taking advantage of the light-addressability, the position of the plug could be monitored and pneumatically controlled. With the developed system, the pH value of a plug with a volume down to 400 nL could be measured. As an example of plug-based operation, two plugs were merged in the channel, and the pH change was detected by differential measurement. KW - light-addressable potentiometric sensor KW - plug-based microfluidic device KW - chemical sensor Y1 - 2016 U6 - http://dx.doi.org/10.3390/mi7070111 SN - 2072-666X N1 - This article belongs to the Special Issue "Micro/Nano Devices for Chemical Analysis" VL - 7 IS - 7 SP - 111 PB - MDPI CY - Basel ER - TY - JOUR A1 - Yoshinobu, Tatsuo A1 - Miyamoto, Ko-ichiro A1 - Wagner, Torsten A1 - Schöning, Michael Josef T1 - Recent developments of chemical imaging sensor systems based on the principle of the light-addressable potentiometric sensor JF - Sensors and actuators B: Chemical N2 - The light-addressable potentiometric sensor (LAPS) is an electrochemical sensor with a field-effect structure to detect the variation of the Nernst potential at its sensor surface, the measured area on which is defined by illumination. Thanks to this light-addressability, the LAPS can be applied to chemical imaging sensor systems, which can visualize the two-dimensional distribution of a particular target ion on the sensor surface. Chemical imaging sensor systems are expected to be useful for analysis of reaction and diffusion in various electrochemical and biological samples. Recent developments of LAPS-based chemical imaging sensor systems, in terms of the spatial resolution, measurement speed, image quality, miniaturization and integration with microfluidic devices, are summarized and discussed. Y1 - 2015 U6 - http://dx.doi.org/10.1016/j.snb.2014.09.002 SN - 1873-3077 (E-Journal); 0925-4005 (Print) VL - 207, Part B SP - 926 EP - 932 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Jildeh, Zaid B. A1 - Wagner, Torsten A1 - Schöning, Michael Josef A1 - Pieper, Martin T1 - Simulating the electromagnetic‐thermal treatment of thin aluminium layers for adhesion improvement JF - Physica status solidi (a) N2 - A composite layer material used in packaging industry is made from joining layers of different materials using an adhesive. An important processing step in the production of aluminium-containing composites is the surface treatment and consequent coating of adhesive material on the aluminium surface. To increase adhesion strength between aluminium layer and the adhesive material, the foil is heat treated. For efficient heating, induction heating was considered as state-of-the-art treatment process. Due to the complexity of the heating process and the unpredictable nature of the heating source, the control of the process is not yet optimised. In this work, a finite element analysis of the process was established and various process parameters were studied. The process was simplified and modelled in 3D. The numerical model contains an air domain, an aluminium layer and a copper coil fitted with a magnetic field concentrating material. The effect of changing the speed of the aluminium foil (or rolling speed) was studied with the change of the coil current. Statistical analysis was used for generating a general control equation of coil current with changing rolling speed. Y1 - 2015 U6 - http://dx.doi.org/10.1002/pssa.201431893 SN - 1862-6319 VL - Vol. 212 IS - 6 SP - 1234 EP - 1241 PB - Wiley CY - Weinheim ER - TY - JOUR A1 - Breuer, Lars A1 - Raue, Markus A1 - Kirschbaum, M. A1 - Mang, Thomas A1 - Schöning, Michael Josef A1 - Thoelen, R. A1 - Wagner, Torsten T1 - Light-controllable polymeric material based on temperature-sensitive hydrogels with incorporated graphene oxide JF - Physica status solidi (a) N2 - Poly(N-isopropylacrylamide) (PNIPAAm) hydrogel films with incorporated graphene oxide (GO) were developed and tested as light-stimulated actuators. GO dispersions were synthesized via Hummers method and characterized toward their optical properties and photothermal energy conversion. The hydrogels were prepared by means of photopolymerization. In addition, the influence of GO within the hydrogel network on the lower critical solution temperature (LCST) was investigated by differential scanning calorimetry (DSC). The optical absorbance and the response to illumination were determined as a function of GO concentration for thin hydrogel films. A proof of principle for the stimulation with light was performed. Y1 - 2015 U6 - http://dx.doi.org/10.1002/pssa.201431944 SN - 1862-6319 VL - 212 IS - 6 SP - 1368 EP - 1374 PB - Wiley CY - Weinheim ER - TY - JOUR A1 - Dantism, S. A1 - Takenaga, S. A1 - Wagner, P. A1 - Wagner, Torsten A1 - Schöning, Michael Josef T1 - Light-addressable Potentiometric Sensor (LAPS) Combined with Multi-chamber Structures to Investigate the Metabolic Activity of Cells JF - Procedia Engineering N2 - LAPS are field-effect-based potentiometric sensors which are able to monitor analyte concentrations in a spatially resolved manner. Hence, a LAPS sensor system is a powerful device to record chemical imaging of the concentration of chemical species in an aqueous solution, chemical reactions, or the growth of cell colonies on the sensor surface, to record chemical images. In this work, multi-chamber 3D-printed structures made out of polymer (PP-ABS) were combined with LAPS chips to analyse differentially and simultaneously the metabolic activity of Escherichia coli K12 and Chinese hamster ovary (CHO) cells, and the responds of those cells to the addition of glucose solution. Y1 - 2015 U6 - http://dx.doi.org/10.1016/j.proeng.2015.08.647 SN - 1877-7058 N1 - Part of special issue "Eurosensors 2015" VL - 120 SP - 384 EP - 387 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Miyamoto, Ko-ichiro A1 - Bing, Yu A1 - Wagner, Torsten A1 - Yoshinobu, Tatsuo A1 - Schöning, Michael Josef T1 - Visualization of Defects on a Cultured Cell Layer by Utilizing Chemical Imaging Sensor JF - Procedia Engineering N2 - The chemical imaging sensor is a field-effect sensor which is able to visualize both the distribution of ions (in LAPS mode) and the distribution of impedance (in SPIM mode) inthe sample. In this study, a novel wound-healing assay is proposed, in which the chemical imaging sensor operated in SPIM mode is applied to monitor the defect of a cell layer brought into proximity of the sensing surface.A reduced impedance inside the defect, which was artificially formed ina cell layer, was successfully visualized in a photocurrent image. Y1 - 2015 U6 - http://dx.doi.org/10.1016/j.proeng.2015.08.806 SN - 1877-7058 N1 - Part of special issue "Eurosensors 2015" VL - 120 SP - 936 EP - 939 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Takenaga, Shoko A1 - Schneider, Benno A1 - Erbay, E. A1 - Biselli, Manfred A1 - Schnitzler, Thomas A1 - Schöning, Michael Josef A1 - Wagner, Torsten T1 - Fabrication of biocompatible lab-on-chip devices for biomedical applications by means of a 3D-printing process JF - Physica status solidi (a) N2 - A new microfluidic assembly method for semiconductor-based biosensors using 3D-printing technologies was proposed for a rapid and cost-efficient design of new sensor systems. The microfluidic unit is designed and printed by a 3D-printer in just a few hours and assembled on a light-addressable potentiometric sensor (LAPS) chip using a photo resin. The cell growth curves obtained from culturing cells within microfluidics-based LAPS systems were compared with cell growth curves in cell culture flasks to examine biocompatibility of the 3D-printed chips. Furthermore, an optimal cell culturing within microfluidics-based LAPS chips was achieved by adjusting the fetal calf serum concentrations of the cell culture medium, an important factor for the cell proliferation. Y1 - 2015 U6 - http://dx.doi.org/10.1002/pssa.201532053 SN - 1862-6319 VL - 212 IS - 6 SP - 1347 EP - 1352 PB - Wiley CY - Weinheim ER - TY - JOUR A1 - Miyamato, Ko-ichiro A1 - Sakakita, Sakura A1 - Wagner, Torsten A1 - Schöning, Michael Josef A1 - Yoshinobu, Tatsuo T1 - Application of chemical imaging sensor to in-situ pH imaging in the vicinity of a corroding metal surface JF - Electrochimica Acta N2 - The chemical imaging sensor was applied to in-situ pH imaging of the solution in the vicinity of a corroding surface of stainless steel under potentiostatic polarization. A test piece of polished stainless steel was placed on the sensing surface leaving a narrow gap filled with artificial seawater and the stainless steel was corroded under polarization. The pH images obtained during polarization showed correspondence between the region of lower pH and the site of corrosion. It was also found that the pH value in the gap became as low as 2 by polarization, which triggered corrosion. Y1 - 2015 U6 - http://dx.doi.org/10.1016/j.electacta.2015.07.184 SN - 0013-4686 VL - 183 SP - 137 EP - 142 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Miyamoto, Ko-ichiro A1 - Itabashi, Akinori A1 - Wagner, Torsten A1 - Schöning, Michael Josef A1 - Yoshinobu, Tatsuo T1 - High-speed chemical imaging inside a microfluidic channel JF - Sensors and actuators. B: Chemical N2 - In this study, a high-speed chemical imaging system was developed for visualization of the interior of a microfluidic channel. A microfluidic channel was constructed on the sensor surface of the light-addressable potentiometric sensor (LAPS), on which the ion concentrations could be measured in parallel at up to 64 points illuminated by optical fibers. The temporal change of pH distribution inside the microfluidic channel was recorded at a maximum rate of 100 frames per second (fps). The high frame rate allowed visualization of moving interfaces and plugs in the channel even at a flow velocity of 111 mm/s, which suggests the feasibility of plug-based microfluidic devices for flow-injection analysis (FIA). Y1 - 2014 U6 - http://dx.doi.org/10.1016/j.snb.2013.12.090 SN - 1873-3077 (E-Journal); 0925-4005 (Print) VL - 194 SP - 521 EP - 527 PB - Elsevier CY - Amsterdam ER -