TY - JOUR A1 - Hafidi, Youssef A1 - El Hatka, Hicham A1 - Schmitz, Dominik A1 - Krauss, Manuel A1 - Pettrak, Jürgen A1 - Biel, Markus A1 - Ittobane, Najim T1 - Sustainable soil additives for water and micronutrient supply: swelling and chelating properties of polyaspartic acid hydrogels utilizing newly developed crosslinkers JF - Gels N2 - Drought and water shortage are serious problems in many arid and semi-arid regions. This problem is getting worse and even continues in temperate climatic regions due to climate change. To address this problem, the use of biodegradable hydrogels is increasingly important for the application as water-retaining additives in soil. Furthermore, efficient (micro-)nutrient supply can be provided by the use of tailored hydrogels. Biodegradable polyaspartic acid (PASP) hydrogels with different available (1,6-hexamethylene diamine (HMD) and L-lysine (LYS)) and newly developed crosslinkers based on diesters of glycine (GLY) and (di-)ethylene glycol (DEG and EG, respectively) were synthesized and characterized using Fourier transform infrared (FTIR) spectroscopy and scanning electron microscopy (SEM) and regarding their swelling properties (kinetic, absorbency under load (AUL)) as well as biodegradability of PASP hydrogel. Copper (II) and zinc (II), respectively, were loaded as micronutrients in two different approaches: in situ with crosslinking and subsequent loading of prepared hydrogels. The results showed successful syntheses of di-glycine-ester-based crosslinkers. Hydrogels with good water-absorbing properties were formed. Moreover, the developed crosslinking agents in combination with the specific reaction conditions resulted in higher water absorbency with increased crosslinker content used in synthesis (10% vs. 20%). The prepared hydrogels are candidates for water-storing soil additives due to the biodegradability of PASP, which is shown in an exemple. The incorporation of Cu(II) and Zn(II) ions can provide these micronutrients for plant growth. KW - micronutrients KW - swelling properties KW - biodegradable polymers KW - hydrogels KW - superabsorbent polymers KW - glycine KW - polyaspartic acid Y1 - 2024 U6 - https://doi.org/10.3390/gels10030170 SN - 2310-2861 VL - 10 IS - 3 SP - Artikel 170 PB - MDPI CY - Basel ER - TY - JOUR A1 - Engelmann, Ulrich M. A1 - Simsek, Beril A1 - Shalaby, Ahmed A1 - Krause, Hans-Joachim T1 - Key contributors to signal generation in frequency mixing magnetic detection (FMMD): an in silico study JF - Sensors N2 - Frequency mixing magnetic detection (FMMD) is a sensitive and selective technique to detect magnetic nanoparticles (MNPs) serving as probes for binding biological targets. Its principle relies on the nonlinear magnetic relaxation dynamics of a particle ensemble interacting with a dual frequency external magnetic field. In order to increase its sensitivity, lower its limit of detection and overall improve its applicability in biosensing, matching combinations of external field parameters and internal particle properties are being sought to advance FMMD. In this study, we systematically probe the aforementioned interaction with coupled Néel–Brownian dynamic relaxation simulations to examine how key MNP properties as well as applied field parameters affect the frequency mixing signal generation. It is found that the core size of MNPs dominates their nonlinear magnetic response, with the strongest contributions from the largest particles. The drive field amplitude dominates the shape of the field-dependent response, whereas effective anisotropy and hydrodynamic size of the particles only weakly influence the signal generation in FMMD. For tailoring the MNP properties and parameters of the setup towards optimal FMMD signal generation, our findings suggest choosing large particles of core sizes dc > 25 nm nm with narrow size distributions (σ < 0.1) to minimize the required drive field amplitude. This allows potential improvements of FMMD as a stand-alone application, as well as advances in magnetic particle imaging, hyperthermia and magnetic immunoassays. KW - key performance indicators KW - magnetic biosensing KW - coupled Néel–Brownian relaxation dynamics KW - frequency mixing magnetic detection KW - magnetic relaxation KW - micromagnetic simulation KW - magnetic nanoparticles Y1 - 2024 U6 - https://doi.org/10.3390/s24061945 SN - 1424-8220 N1 - This article belongs to the Special Issue "Advances in Magnetic Sensors and Their Applications" VL - 24 IS - 6 PB - MDPI CY - Basel ER - TY - JOUR A1 - Karschuck, Tobias A1 - Poghossian, Arshak A1 - Ser, Joey A1 - Tsokolakyan, Astghik A1 - Achtsnicht, Stefan A1 - Wagner, Patrick A1 - Schöning, Michael Josef T1 - Capacitive model of enzyme-modified field-effect biosensors: Impact of enzyme coverage JF - Sensors and Actuators B: Chemical N2 - Electrolyte-insulator-semiconductor capacitors (EISCAP) belong to field-effect sensors having an attractive transducer architecture for constructing various biochemical sensors. In this study, a capacitive model of enzyme-modified EISCAPs has been developed and the impact of the surface coverage of immobilized enzymes on its capacitance-voltage and constant-capacitance characteristics was studied theoretically and experimentally. The used multicell arrangement enables a multiplexed electrochemical characterization of up to sixteen EISCAPs. Different enzyme coverages have been achieved by means of parallel electrical connection of bare and enzyme-covered single EISCAPs in diverse combinations. As predicted by the model, with increasing the enzyme coverage, both the shift of capacitance-voltage curves and the amplitude of the constant-capacitance signal increase, resulting in an enhancement of analyte sensitivity of the EISCAP biosensor. In addition, the capability of the multicell arrangement with multi-enzyme covered EISCAPs for sequentially detecting multianalytes (penicillin and urea) utilizing the enzymes penicillinase and urease has been experimentally demonstrated and discussed. KW - Field-effect biosensor KW - Capacitive model KW - Enzyme coverage KW - Multianalyte detection KW - Penicillin Y1 - 2024 U6 - https://doi.org/10.1016/j.snb.2024.135530 SN - 0925-4005 (Print) SN - 1873-3077 (Online) N1 - Corresponding Author: Michael J. Schöning VL - 408 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Özsoylu, Dua A1 - Aliazizi, Fereshteh A1 - Wagner, Patrick A1 - Schöning, Michael Josef T1 - Template bacteria-free fabrication of surface imprinted polymer-based biosensor for E. coli detection using photolithographic mimics: Hacking bacterial adhesion JF - Biosensors and Bioelectronics N2 - As one class of molecular imprinted polymers (MIPs), surface imprinted polymer (SIP)-based biosensors show great potential in direct whole-bacteria detection. Micro-contact imprinting, that involves stamping the template bacteria immobilized on a substrate into a pre-polymerized polymer matrix, is the most straightforward and prominent method to obtain SIP-based biosensors. However, the major drawbacks of the method arise from the requirement for fresh template bacteria and often non-reproducible bacteria distribution on the stamp substrate. Herein, we developed a positive master stamp containing photolithographic mimics of the template bacteria (E. coli) enabling reproducible fabrication of biomimetic SIP-based biosensors without the need for the “real” bacteria cells. By using atomic force and scanning electron microscopy imaging techniques, respectively, the E. coli-capturing ability of the SIP samples was tested, and compared with non-imprinted polymer (NIP)-based samples and control SIP samples, in which the cavity geometry does not match with E. coli cells. It was revealed that the presence of the biomimetic E. coli imprints with a specifically designed geometry increases the sensor E. coli-capturing ability by an “imprinting factor” of about 3. These findings show the importance of geometry-guided physical recognition in bacterial detection using SIP-based biosensors. In addition, this imprinting strategy was employed to interdigitated electrodes and QCM (quartz crystal microbalance) chips. E. coli detection performance of the sensors was demonstrated with electrochemical impedance spectroscopy (EIS) and QCM measurements with dissipation monitoring technique (QCM-D). KW - Surface imprinted polymer KW - E. coli detection KW - Photolithographic mimics KW - Master stamp KW - Quartz crystal microbalance Y1 - 2024 U6 - https://doi.org/10.1016/j.bios.2024.116491 SN - 1873-4235 (eISSN) SN - 0956-5663 N1 - Corresponding author: Michael J. Schöning VL - 261 PB - Elsevier CY - Amsterdam ER - TY - BOOK A1 - Drumm, Christian A1 - Scheuermann, Bernd A1 - Weidner, Stefan T1 - Introduction to SAP S/4HANA® : The official companion book based on model company Global Bike–for learning, teaching, and training N2 - This easy-to-understand introduction to SAP S/4HANA guides you through the central processes in sales, purchasing and procurement, finance, production, and warehouse management using the model company Global Bike. Familiarize yourself with the basics of business administration, the relevant organizational data, master data, and transactional data, as well as a selection of core business processes in SAP. Using practical examples and tutorials, you will soon become an SAP S/4HANA professional! Tutorials and exercises for beginners, advanced users, and experts make it easy for you to practice your new knowledge. The prerequisite for this book is access to an SAP S/4HANA client with Global Bike version 4.1. - Business fundamentals and processes in the SAP system - Sales, purchasing and procurement, production, finance, and warehouse management - Tutorials at different qualification levels, exercises, and recap of case studies - Includes extensive download material for students, lecturers, and professors Y1 - 2024 SN - 9783960122685 PB - Espresso Tutorials CY - Gleichen ER - TY - JOUR A1 - Haeger, Gerrit A1 - Jolmes, Tristan A1 - Oyen, Sven A1 - Jaeger, Karl-Erich A1 - Bongaerts, Johannes A1 - Schörken, Ulrich A1 - Siegert, Petra T1 - Novel recombinant aminoacylase from Paraburkholderia monticola capable of N-acyl-amino acid synthesis JF - Applied Microbiology and Biotechnology N2 - N-Acyl-amino acids can act as mild biobased surfactants, which are used, e.g., in baby shampoos. However, their chemical synthesis needs acyl chlorides and does not meet sustainability criteria. Thus, the identification of biocatalysts to develop greener synthesis routes is desirable. We describe a novel aminoacylase from Paraburkholderia monticola DSM 100849 (PmAcy) which was identified, cloned, and evaluated for its N-acyl-amino acid synthesis potential. Soluble protein was obtained by expression in lactose autoinduction medium and co-expression of molecular chaperones GroEL/S. Strep-tag affinity purification enriched the enzyme 16-fold and yielded 15 mg pure enzyme from 100 mL of culture. Biochemical characterization revealed that PmAcy possesses beneficial traits for industrial application like high temperature and pH-stability. A heat activation of PmAcy was observed upon incubation at temperatures up to 80 °C. Hydrolytic activity of PmAcy was detected with several N-acyl-amino acids as substrates and exhibited the highest conversion rate of 773 U/mg with N-lauroyl-L-alanine at 75 °C. The enzyme preferred long-chain acyl-amino-acids and displayed hardly any activity with acetyl-amino acids. PmAcy was also capable of N-acyl-amino acid synthesis with good conversion rates. The best synthesis results were obtained with the cationic L-amino acids L-arginine and L-lysine as well as with L-leucine and L-phenylalanine. Exemplarily, L-phenylalanine was acylated with fatty acids of chain lengths from C8 to C18 with conversion rates of up to 75%. N-lauroyl-L-phenylalanine was purified by precipitation, and the structure of the reaction product was verified by LC–MS and NMR. KW - Chaperone KW - Biocatalysis KW - Aminoacylase KW - Acylation KW - Acyl-amino acids KW - Biosurfactants Y1 - 2024 U6 - https://doi.org/10.1007/s00253-023-12868-8 SN - 1432-0614 N1 - Corresponding author: Petra Siegert IS - 108 PB - Springer CY - Berlin ER - TY - JOUR A1 - Böhnisch, Nils A1 - Braun, Carsten A1 - Muscarello, Vincenzo A1 - Marzocca, Pier T1 - About the wing and whirl flutter of a slender wing–propeller system JF - Journal of Aircraft N2 - Next-generation aircraft designs often incorporate multiple large propellers attached along the wingspan (distributed electric propulsion), leading to highly flexible dynamic systems that can exhibit aeroelastic instabilities. This paper introduces a validated methodology to investigate the aeroelastic instabilities of wing–propeller systems and to understand the dynamic mechanism leading to wing and whirl flutter and transition from one to the other. Factors such as nacelle positions along the wing span and chord and its propulsion system mounting stiffness are considered. Additionally, preliminary design guidelines are proposed for flutter-free wing–propeller systems applicable to novel aircraft designs. The study demonstrates how the critical speed of the wing–propeller systems is influenced by the mounting stiffness and propeller position. Weak mounting stiffnesses result in whirl flutter, while hard mounting stiffnesses lead to wing flutter. For the latter, the position of the propeller along the wing span may change the wing mode shapes and thus the flutter mechanism. Propeller positions closer to the wing tip enhance stability, but pusher configurations are more critical due to the mass distribution behind the elastic axis. Y1 - 2024 U6 - https://doi.org/10.2514/1.C037542 SN - 1533-3868 SP - 1 EP - 14 PB - AIAA CY - Reston, Va. ER - TY - JOUR A1 - Ayala, Rafael Ceja A1 - Harris, Isaac A1 - Kleefeld, Andreas T1 - Direct sampling method via Landweber iteration for an absorbing scatterer with a conductive boundary JF - Inverse Problems and Imaging N2 - In this paper, we consider the inverse shape problem of recovering isotropic scatterers with a conductive boundary condition. Here, we assume that the measured far-field data is known at a fixed wave number. Motivated by recent work, we study a new direct sampling indicator based on the Landweber iteration and the factorization method. Therefore, we prove the connection between these reconstruction methods. The method studied here falls under the category of qualitative reconstruction methods where an imaging function is used to recover the absorbing scatterer. We prove stability of our new imaging function as well as derive a discrepancy principle for recovering the regularization parameter. The theoretical results are verified with numerical examples to show how the reconstruction performs by the new Landweber direct sampling method. Y1 - 2024 U6 - https://doi.org/10.3934/ipi.2023051 SN - 1930-8337 SN - 1930-8345 (eISSN) VL - 18 IS - 3 SP - 708 EP - 729 PB - AIMS CY - Springfield ER - TY - CHAP A1 - Rütters, René A1 - Bragard, Michael A1 - Dolls, Sarah T1 - The Inverted Rotary Pendulum: Facilitating Practical Teaching in Advanced Control Engineering T2 - 2024 IEEE Global Engineering Education Conference (EDUCON) N2 - This paper outlines a practical approach to teach control engineering principles, with an inverted rotary pendulum, serving as an illustrative example. It shows how the pendulum is embedded in an advanced course of control engineering. This approach is incorporated into a flipped-classroom concept, as well as classical teaching concepts, offering students practical experience in control engineering. In addition, the design of the pendulum is shown, using a Raspberry Pi as the target platform for Matlab Simulink. This pendulum can be used in the classroom to evaluate the controller design mentioned above. It is analysed if the use of the pendulum generates a deeper understanding of the learning contents. KW - Matlab KW - Engineering education KW - Online services KW - Software packages KW - Electronic learning KW - Control engineering Y1 - 2024 U6 - https://doi.org/10.1109/EDUCON60312.2024.10578937 SN - 2165-9559 SN - 2165-9567 (eISSN) N1 - 2024 IEEE Global Engineering Education Conference (EDUCON), 08-11 May 2024, Kos Island, Greece PB - IEEE CY - New York, NY ER - TY - CHAP A1 - Becker, Tim A1 - Bragard, Michael T1 - Low-Voltage DC Training Lab for Electric Drives - Optimizing the Balancing Act Between High Student Throughput and Individual Learning Speed T2 - 2024 IEEE Global Engineering Education Conference (EDUCON) N2 - After a brief introduction of conventional laboratory structures, this work focuses on an innovative and universal approach for a setup of a training laboratory for electric machines and drive systems. The novel approach employs a central 48 V DC bus, which forms the backbone of the structure. Several sets of DC machine, asynchronous machine and synchronous machine are connected to this bus. The advantages of the novel system structure are manifold, both from a didactic and a technical point of view: Student groups can work on their own performance level in a highly parallelized and at the same time individualized way. Additional training setups (similar or different) can easily be added. Only the total power dissipation has to be provided, i.e. the DC bus balances the power flow between the student groups. Comparative results of course evaluations of several cohorts of students are shown. KW - Synchronous machines KW - Power dissipation KW - Throughput KW - Low voltage KW - DC machines KW - Manifolds KW - Training Y1 - 2024 U6 - https://doi.org/10.1109/EDUCON60312.2024.10578902 SN - 2165-9559 SN - 2165-9567 (eISSN) N1 - 2024 IEEE Global Engineering Education Conference (EDUCON), 08-11 May 2024, Kos Island, Greece PB - IEEE CY - New York, NY ER - TY - JOUR A1 - Chwallek, Constanze A1 - Nawrath, Lara A1 - Krastina, Anzelika A1 - Bruksle, Ieva T1 - Supportive research on sustainable entrepreneurship and business practices JF - SECA Sustainable Entrepreneurship for Climate Action Y1 - 2024 SN - 978-952-316-514-4 (pdf) SN - 2954-1654 (on-line publication) IS - 3 PB - Lapland University of Applied Sciences Ltd CY - Rovaniemi ER - TY - INPR A1 - Schmülling, Max A1 - Gützlaff, Joel A1 - Czupalla, Markus T1 - A thermal simulation environment for moving objects on the lunar surface N2 - This paper presents a thermal simulation environment for moving objects on the lunar surface. The goal of the thermal simulation environment is to enable the reliable prediction of the temperature development of a given object on the lunar surface by providing the respective heat fluxes for a mission on a given travel path. The user can import any object geometry and freely define the path that the object should travel. Using the path of the object, the relevant lunar surface geometry is imported from a digital elevation model. The relevant parts of the lunar surface are determined based on distance to the defined path. A thermal model of these surface sections is generated, consisting of a porous layer on top and a denser layer below. The object is moved across the lunar surface, and its inclination is adapted depending on the slope of the terrain below it. Finally, a transient thermal analysis of the object and its environment is performed at several positions on its path and the results are visualized. The paper introduces details on the thermal modeling of the lunar surface, as well as its verification. Furthermore, the structure of the created software is presented. The robustness of the environment is verified with the help of sensitivity studies and possible improvements are presented. KW - Dynamic modeling KW - Thermal analysis KW - ESATAN-TMS KW - Lunar Surface KW - Thermal Model Y1 - 2024 U6 - https://doi.org/10.21203/rs.3.rs-3902363/v1 ER - TY - JOUR A1 - Schopen, Oliver A1 - Narayan, Sriram A1 - Beckmann, Marvin A1 - Najmi, Aezid-Ul-Hassan A1 - Esch, Thomas A1 - Shabani, Bahman T1 - An EIS approach to quantify the effects of inlet air relative humidity on the performance of proton exchange membrane fuel cells: a pathway to developing a novel fault diagnostic method JF - International Journal of Hydrogen Energy N2 - In this work, the effect of low air relative humidity on the operation of a polymer electrolyte membrane fuel cell is investigated. An innovative method through performing in situ electrochemical impedance spectroscopy is utilised to quantify the effect of inlet air relative humidity at the cathode side on internal ionic resistances and output voltage of the fuel cell. In addition, algorithms are developed to analyse the electrochemical characteristics of the fuel cell. For the specific fuel cell stack used in this study, the membrane resistance drops by over 39 % and the cathode side charge transfer resistance decreases by 23 % after increasing the humidity from 30 % to 85 %, while the results of static operation also show an increase of ∼2.2 % in the voltage output after increasing the relative humidity from 30 % to 85 %. In dynamic operation, visible drying effects occur at < 50 % relative humidity, whereby the increase of the air side stoichiometry increases the drying effects. Furthermore, other parameters, such as hydrogen humidification, internal stack structure, and operating parameters like stoichiometry, pressure, and temperature affect the overall water balance. Therefore, the optimal humidification range must be determined by considering all these parameters to maximise the fuel cell performance and durability. The results of this study are used to develop a health management system to ensure sufficient humidification by continuously monitoring the fuel cell polarisation data and electrochemical impedance spectroscopy indicators. KW - PEM fuel cell KW - Electrochemical impedance spectroscopy KW - Relative air humidity KW - Active humidity control KW - Impedance analysis Y1 - 2024 SN - 0360-3199 (print) U6 - https://doi.org/10.1016/j.ijhydene.2024.01.218 SN - 1879-3487 (online) VL - 58 IS - 8 SP - 1302 EP - 1315 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Schopen, Oliver A1 - Shah, Neel A1 - Esch, Thomas A1 - Shabani, Bahman T1 - Critical quantitative evaluation of integrated health management methods for fuel cell applications JF - International Journal of Hydrogen Energy N2 - Online fault diagnostics is a crucial consideration for fuel cell systems, particularly in mobile applications, to limit downtime and degradation, and to increase lifetime. Guided by a critical literature review, in this paper an overview of Health management systems classified in a scheme is presented, introducing commonly utilised methods to diagnose FCs in various applications. In this novel scheme, various Health management system methods are summarised and structured to provide an overview of existing systems including their associated tools. These systems are classified into four categories mainly focused on model-based and non-model-based systems. The individual methods are critically discussed when used individually or combined aimed at further understanding their functionality and suitability in different applications. Additionally, a tool is introduced to evaluate methods from each category based on the scheme presented. This tool applies the technique of matrix evaluation utilising several key parameters to identify the most appropriate methods for a given application. Based on this evaluation, the most suitable methods for each specific application are combined to build an integrated Health management system. KW - Fuel cell KW - Health management system KW - Online diagnostic KW - Fault detection KW - Non-model-based Evaluation Y1 - 2024 U6 - https://doi.org/10.1016/j.ijhydene.2024.05.156 SN - 0360-3199 VL - 70 SP - 370 EP - 388 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Aliazizi, Fereshteh A1 - Özsoylu, Dua A1 - Bakhshi Sichani, Soroush A1 - Khorshid, Mehran A1 - Glorieux, Christ A1 - Robbens, Johan A1 - Schöning, Michael Josef A1 - Wagner, Patrick T1 - Development and Calibration of a Microfluidic, Chip-Based Sensor System for Monitoring the Physical Properties of Water Samples in Aquacultures JF - Micromachines N2 - In this work, we present a compact, bifunctional chip-based sensor setup that measures the temperature and electrical conductivity of water samples, including specimens from rivers and channels, aquaculture, and the Atlantic Ocean. For conductivity measurements, we utilize the impedance amplitude recorded via interdigitated electrode structures at a single triggering frequency. The results are well in line with data obtained using a calibrated reference instrument. The new setup holds for conductivity values spanning almost two orders of magnitude (river versus ocean water) without the need for equivalent circuit modelling. Temperature measurements were performed in four-point geometry with an on-chip platinum RTD (resistance temperature detector) in the temperature range between 2 °C and 40 °C, showing no hysteresis effects between warming and cooling cycles. Although the meander was not shielded against the liquid, the temperature calibration provided equivalent results to low conductive Milli-Q and highly conductive ocean water. The sensor is therefore suitable for inline and online monitoring purposes in recirculating aquaculture systems. KW - chip-based sensor setup KW - aquaculture KW - microfluidics KW - impedance spectroscopy KW - thermometry KW - electrical conductivity of liquids Y1 - 2024 U6 - https://doi.org/10.3390/mi15060755 SN - 2072-666X N1 - This article belongs to the Special Issue "Multisensor Arrays" N1 - Corresponding author: Michael J. Schöning VL - 15 IS - 6 PB - MDPI CY - Basel ER - TY - JOUR A1 - Thoma, Andreas A1 - Gardi, Alessandro A1 - Fisher, Alex A1 - Braun, Carsten T1 - Improving local path planning for UAV flight in challenging environments by refining cost function weights JF - CEAS Aeronautical Journal N2 - Unmanned Aerial Vehicles (UAV) constantly gain in versatility. However, more reliable path planning algorithms are required until full autonomous UAV operation is possible. This work investigates the algorithm 3DVFH* and analyses its dependency on its cost function weights in 2400 environments. The analysis shows that the 3DVFH* can find a suitable path in every environment. However, a particular type of environment requires a specific choice of cost function weights. For minimal failure, probability interdependencies between the weights of the cost function have to be considered. This dependency reduces the number of control parameters and simplifies the usage of the 3DVFH*. Weights for costs associated with vertical evasion (pitch cost) and vicinity to obstacles (obstacle cost) have the highest influence on the failure probability of the local path planner. Environments with mainly very tall buildings (like large American city centres) require a preference for horizontal avoidance manoeuvres (achieved with high pitch cost weights). In contrast, environments with medium-to-low buildings (like European city centres) benefit from vertical avoidance manoeuvres (achieved with low pitch cost weights). The cost of the vicinity to obstacles also plays an essential role and must be chosen adequately for the environment. Choosing these two weights ideal is sufficient to reduce the failure probability below 10%. KW - Bio-inspired systems KW - Path planning KW - Obstacle avoidance KW - Unmanned aerial vehicles Y1 - 2024 U6 - https://doi.org/10.1007/s13272-024-00741-x SN - 1869-5590 (eISSN) SN - 1869-5582 N1 - Corresponding author: Andreas Thoma PB - Springer CY - Wien ER - TY - JOUR A1 - Pogorelova, Natalia A1 - Rogachev, Evgeniy A1 - Akimbekov, Nuraly S. A1 - Digel, Ilya T1 - Effect of dehydration method on the micro- and nanomorphological properties of bacterial cellulose produced by Medusomyces gisevii on different substrates JF - Journal of materials science N2 - Many important properties of bacterial cellulose (BC), such as moisture absorption capacity, elasticity and tensile strength, largely depend on its structure. This paper presents a study on the effect of the drying method on BC films produced by Medusomyces gisevii using two different procedures: room temperature drying (RT, (24 ± 2 °C, humidity 65 ± 1%, dried until a constant weight was reached) and freeze-drying (FD, treated at − 75 °C for 48 h). BC was synthesized using one of two different carbon sources—either glucose or sucrose. Structural differences in the obtained BC films were evaluated using atomic force microscopy (AFM), scanning electron microscopy (SEM), and X-ray diffraction. Macroscopically, the RT samples appeared semi-transparent and smooth, whereas the FD group exhibited an opaque white color and sponge-like structure. SEM examination showed denser packing of fibrils in FD samples while RT-samples displayed smaller average fiber diameter, lower surface roughness and less porosity. AFM confirmed the SEM observations and showed that the FD material exhibited a more branched structure and a higher surface roughness. The samples cultivated in a glucose-containing nutrient medium, generally displayed a straight and ordered shape of fibrils compared to the sucrose-derived BC, characterized by a rougher and wavier structure. The BC films dried under different conditions showed distinctly different crystallinity degrees, whereas the carbon source in the culture medium was found to have a relatively small effect on the BC crystallinity. Y1 - 2024 U6 - https://doi.org/10.1007/s10853-024-09596-3 SN - 1573-4803 (Online) SN - 0022-2461 (Print) N1 - Corresponding author: Ilya Digel VL - 2024 PB - Springer Science + Business Media CY - Dordrecht ER - TY - JOUR A1 - Tix, Julian A1 - Moll, Fabian A1 - Krafft, Simone A1 - Betsch, Matthias A1 - Tippkötter, Nils T1 - Hydrogen production from enzymatic pretreated organic waste with thermotoga neapolitana JF - Energies N2 - Biomass from various types of organic waste was tested for possible use in hydrogen production. The composition consisted of lignified samples, green waste, and kitchen scraps such as fruit and vegetable peels and leftover food. For this purpose, the enzymatic pretreatment of organic waste with a combination of five different hydrolytic enzymes (cellulase, amylase, glucoamylase, pectinase and xylase) was investigated to determine its ability to produce hydrogen (H2) with the hydrolyzate produced here. In course, the anaerobic rod-shaped bacterium T. neapolitana was used for H2 production. First, the enzymes were investigated using different substrates in preliminary experiments. Subsequently, hydrolyses were carried out using different types of organic waste. In the hydrolysis carried out here for 48 h, an increase in glucose concentration of 481% was measured for waste loads containing starch, corresponding to a glucose concentration at the end of hydrolysis of 7.5 g·L−1. In the subsequent set fermentation in serum bottles, a H2 yield of 1.26 mmol H2 was obtained in the overhead space when Terrific Broth Medium with glucose and yeast extract (TBGY medium) was used. When hydrolyzed organic waste was used, even a H2 yield of 1.37 mmol could be achieved in the overhead space. In addition, a dedicated reactor system for the anaerobic fermentation of T. neapolitana to produce H2 was developed. The bioreactor developed here can ferment anaerobically with a very low loss of produced gas. Here, after 24 h, a hydrogen concentration of 83% could be measured in the overhead space. KW - Biological hydrogen KW - Organic waste KW - Dark fermentation KW - Hydrolysis KW - Pretreatment Y1 - 2024 U6 - https://doi.org/10.3390/en17122938 SN - 1996-1073 N1 - Corresponding author: Nils Tippkötter VL - 17 IS - 12 PB - MDPI CY - Basel ER - TY - JOUR A1 - Oehlenschläger, Katharina A1 - Volkmar, Marianne A1 - Stiefelmaier, Judith A1 - Langsdorf, Alexander A1 - Holtmann, Dirk A1 - Tippkötter, Nils A1 - Ulber, Roland T1 - New insights into the influence of pre-culture on robust solvent production of C. acetobutylicum JF - Applied Microbiology and Biotechnology N2 - Clostridia are known for their solvent production, especially the production of butanol. Concerning the projected depletion of fossil fuels, this is of great interest. The cultivation of clostridia is known to be challenging, and it is difficult to achieve reproducible results and robust processes. However, existing publications usually concentrate on the cultivation conditions of the main culture. In this paper, the influence of cryo-conservation and pre-culture on growth and solvent production in the resulting main cultivation are examined. A protocol was developed that leads to reproducible cultivations of Clostridium acetobutylicum. Detailed investigation of the cell conservation in cryo-cultures ensured reliable cell growth in the pre-culture. Moreover, a reason for the acid crash in the main culture was found, based on the cultivation conditions of the pre-culture. The critical parameter to avoid the acid crash and accomplish the shift to the solventogenesis of clostridia is the metabolic phase in which the cells of the pre-culture were at the time of inoculation of the main culture; this depends on the cultivation time of the pre-culture. Using cells from the exponential growth phase to inoculate the main culture leads to an acid crash. To achieve the solventogenic phase with butanol production, the inoculum should consist of older cells which are in the stationary growth phase. Considering these parameters, which affect the entire cultivation process, reproducible results and reliable solvent production are ensured. KW - Pre-culture KW - Metabolic shift KW - Acid crash KW - C. acetobutylicum KW - ABE KW - Butanol Y1 - 2024 U6 - https://doi.org/10.1007/s00253-023-12981-8 SN - 1432-0614 VL - 108 PB - Springer CY - Berlin, Heidelberg ER - TY - JOUR A1 - Clausnitzer, Julian A1 - Kleefeld, Andreas T1 - A spectral Galerkin exponential Euler time-stepping scheme for parabolic SPDEs on two-dimensional domains with a C² boundary JF - Discrete and Continuous Dynamical Systems - Series B N2 - We consider the numerical approximation of second-order semi-linear parabolic stochastic partial differential equations interpreted in the mild sense which we solve on general two-dimensional domains with a C² boundary with homogeneous Dirichlet boundary conditions. The equations are driven by Gaussian additive noise, and several Lipschitz-like conditions are imposed on the nonlinear function. We discretize in space with a spectral Galerkin method and in time using an explicit Euler-like scheme. For irregular shapes, the necessary Dirichlet eigenvalues and eigenfunctions are obtained from a boundary integral equation method. This yields a nonlinear eigenvalue problem, which is discretized using a boundary element collocation method and is solved with the Beyn contour integral algorithm. We present an error analysis as well as numerical results on an exemplary asymmetric shape, and point out limitations of the approach. KW - Nonlinear eigenvalue problems KW - Boundary integral equations, KW - Exponential Euler scheme, KW - Parabolic SPDEs Y1 - 2024 U6 - https://doi.org/10.3934/dcdsb.2023148 SN - 1531-3492 SN - 1553-524X (eISSN) VL - 29 IS - 4 SP - 1624 EP - 1651 PB - AIMS CY - Springfield ER -