TY - CHAP A1 - Tran, Thanh Ngoc A1 - Novacek, V. A1 - Tolba, R. A1 - Klinge, U. A1 - Turquier, F. A1 - Staat, Manfred T1 - Experimental and Computational approach to study colorectal anastomosis. ISB2011, Proceedings of the XXIII Congress of the International Society of Biomechanics, Brussels, Belgium, July 3-7, 2011 N2 - Summary: This paper presents a methodology to study and understand the mechanics of stapled anastomotic behaviors by combining empirical experimentation and finite element analysis. Performance of stapled anastomosis is studied in terms of leakage and numerical results which are compared to in vitro experiments performed on fresh porcine tissue. Results suggest that leaks occur between the tissue and staple legs penetrating through the tissue. KW - Anastomose KW - Finite-Elemente-Methode KW - Biomechanik KW - Anastomosis KW - Finite element method KW - Biomechanics Y1 - 2011 ER - TY - CHAP A1 - Loeb, Horst W. A1 - Schartner, Karl-Heinz A1 - Dachwald, Bernd A1 - Ohndorf, Andreas A1 - Seboldt, Wolfgang T1 - An Interstellar – Heliopause mission using a combination of solar/radioisotope electric propulsion T2 - Presented at the 32nd International Electric Propulsion Conference N2 - There is common agreement within the scientific community that in order to understand our local galactic environment it will be necessary to send a spacecraft into the region beyond the solar wind termination shock. Considering distances of 200 AU for a new mission, one needs a spacecraft travelling at a speed of close to 10 AU/yr in order to keep the mission duration in the range of less than 25 yrs, a transfer time postulated by ESA.Two propulsion options for the mission have been proposed and discussed so far: the solar sail propulsion and the ballistic/radioisotope electric propulsion. As a further alternative, we here investigate a combination of solar-electric propulsion and radioisotope-electric propulsion. The solar-electric propulsion stage consists of six 22 cm diameter “RIT-22”ion thrusters working with a high specific impulse of 7377 s corresponding to a positive grid voltage of 5 kV. Solar power of 53 kW BOM is provided by a light-weight solar array. The REP-stage consists of four space-proven 10 cm diameter “RIT-10” ion thrusters that will be operating one after the other for 9 yrs in total. Four advanced radioisotope generators provide 648 W at BOM. The scientific instrument package is oriented at earlier studies. For its mass and electric power requirement 35 kg and 35 W are assessed, respectively. Optimized trajectory calculations, treated in a separate contribution, are based on our “InTrance” method.The program yields a burn out of the REP stage in a distance of 79.6 AU for a usage of 154 kg of Xe propellant. With a C3 = 45,1 (km/s)2 a heliocentric probe velocity of 10 AU/yr is reached at this distance, provided a close Jupiter gravity assist adds a velocity increment of 2.7 AU/yr. A transfer time of 23.8 yrs results for this scenario requiring about 450 kg Xe for the SEP stage, jettisoned at 3 AU. We interpret the SEP/REP propulsion as a competing alternative to solar sail and ballistic/REP propulsion. Omiting a Jupiter fly-by even allows more launch flexibility, leaving the mission duration in the range of the ESA specification. Y1 - 2011 N1 - 32nd International Electric Propulsion Conference, 11-15 September. Wiesbaden, Germany SP - 1 EP - 7 ER - TY - CHAP A1 - Dachwald, Bernd A1 - Xu, Changsheng A1 - Feldmann, Marco A1 - Plescher, Engelbert A1 - Digel, Ilya A1 - Artmann, Gerhard T1 - Development and testing of a subsurface probe for detection of life in deep ice : [abstract] N2 - We present the novel concept of a combined drilling and melting probe for subsurface ice research. This probe, named “IceMole”, is currently developed, built, and tested at the FH Aachen University of Applied Sciences’ Astronautical Laboratory. Here, we describe its first prototype design and report the results of its field tests on the Swiss Morteratsch glacier. Although the IceMole design is currently adapted to terrestrial glaciers and ice shields, it may later be modified for the subsurface in-situ investigation of extraterrestrial ice, e.g., on Mars, Europa, and Enceladus. If life exists on those bodies, it may be present in the ice (as life can also be found in the deep ice of Earth). KW - Eisschicht KW - Sonde KW - subsurface probe KW - subsurface ice research Y1 - 2011 ER - TY - CHAP A1 - Dachwald, Bernd A1 - Xu, Changsheng A1 - Feldmann, Marco A1 - Plescher, Engelbert T1 - IceMole : Development of a novel subsurface ice probe and testing of the first prototype on the Morteratsch Glacier T2 - EGU General Assembly 2011 Vienna | Austria | 03 – 08 April 2011 N2 - We present the novel concept of a combined drilling and melting probe for subsurface ice research. This probe, named “IceMole”, is currently developed, built, and tested at the FH Aachen University of Applied Sciences’ Astronautical Laboratory. Here, we describe its first prototype design and report the results of its field tests on the Swiss Morteratsch glacier. Although the IceMole design is currently adapted to terrestrial glaciers and ice shields, it may later be modified for the subsurface in-situ investigation of extraterrestrial ice, e.g., on Mars, Europa, and Enceladus. If life exists on those bodies, it may be present in the ice (as life can also be found in the deep ice of Earth). Y1 - 2011 ER - TY - CHAP A1 - Artmann, Gerhard A1 - Digel, Ilya A1 - Linder, Peter A1 - Temiz Artmann, Aysegül T1 - Biophysical and Engineering Contributions to Plant Research N2 - Tests with palm tree leaves have just started yet and scan data are in the process to be analyzed. The final goal of future project for palm tree gender and species recognition will be to develop optical scanning technology to be applied to date palm tree leaves for in–situ screening purposes. Depending on the software used and the particular requirements of the users the technology potentially shall be able to identify palm tree diseases, palm tree gender, and species of young date palm trees by scanning leaves. KW - Pflanzenphysiologie KW - Dattel KW - Pflanzenscanner KW - plant scanner KW - date palm tree Y1 - 2011 ER - TY - CHAP A1 - Artmann, Gerhard A1 - Stadler, Andreas M. A1 - Embs, Jan P. A1 - Zaccai, Giuseppe A1 - Büldt, Georg A1 - Digel, Ilya A1 - Temiz Artmann, Aysegül T1 - The crucial role of water in a phase transition of hemoglobin at body temperature : [abstract] N2 - The observation of a temperature transition of hemoglobin occurring at a critical temperature close to body temperature KW - Hämoglobin KW - Erythrozyt KW - Körpertemperatur Y1 - 2010 ER - TY - CHAP A1 - Digel, Ilya A1 - Leimena, W. A1 - Dachwald, Bernd A1 - Linder, Peter A1 - Porst, Dariusz A1 - Kayser, Peter A1 - Funke, O. A1 - Temiz Artmann, Aysegül A1 - Artmann, Gerhard T1 - In-situ biological decontamination of an ice melting probe : [abstract] N2 - The objective of our study was to investigate the efficacy of different in-situ decontamination protocols in the conditions of thermo-mechanical ice-melting. KW - Sonde KW - Dekontamination KW - Wasserstoffperoxid KW - Natriumhypochlorit Y1 - 2010 ER - TY - CHAP A1 - Borggräfe, Andreas A1 - Dachwald, Bernd T1 - Mission performance evaluation for solar sails using a refined SRP force model with variable optical coefficients T2 - 2nd International Symposium on Solar Sailing N2 - Solar sails provide ignificant advantages over other low-thrust propulsion systems because they produce thrust by the momentum exchange from solar radiation pressure (SRP) and thus do not consume any propellant.The force exerted on a very thin sail foil basically depends on the light incidence angle. Several analytical SRP force models that describe the SRP force acting on the sail have been established since the 1970s. All the widely used models use constant optical force coefficients of the reflecting sail material. In 2006,MENGALI et al. proposed a refined SRP force model that takes into account the dependancy of the force coefficients on the light incident angle,the sail’s distance from the sun (and thus the sail emperature) and the surface roughness of the sail material [1]. In this paper, the refined SRP force model is compared to the previous ones in order to identify the potential impact of the new model on the predicted capabilities of solar sails in performing low-cost interplanetary space missions. All force models have been implemented within InTrance, a global low-thrust trajectory optimization software utilizing evolutionary neurocontrol [2]. Two interplanetary rendezvous missions, to Mercury and the near-Earth asteroid 1996FG3, are investigated. Two solar sail performances in terms of characteristic acceleration are examined for both scenarios, 0.2 mm/s2 and 0.5 mm/s2, termed “low” and “medium” sail performance. In case of the refined SRP model, three different values of surface roughness are chosen, h = 0 nm, 10 nm and 25 nm. The results show that the refined SRP force model yields shorter transfer times than the standard model. Y1 - 2010 N1 - 2nd International Symposium on Solar Sailing, ISSS 2010, 2010-07-20 - 2010-07-22. New York City College of Technology of the City University of New York, USA SP - 1 EP - 6 ER - TY - CHAP A1 - Abel, Thomas A1 - Bonin, Dominik A1 - Albracht, Kirsten A1 - Zeller, Sebastian A1 - Brüggemann, Gert-Peter A1 - Burkett, Brendan A1 - Strüder, Heiko K. T1 - Kinematic profile of the elite handcyclist T2 - 28th International Conference on Biomechanics in Sports, Marquette, Michigan, USA, July 19 – 23, 2010 Y1 - 2017 SN - 1999-4168 SP - 140 EP - 141 ER - TY - CHAP A1 - Kurulgan Demirci, Eylem A1 - Linder, Peter A1 - Demirci, Taylan A1 - Gierkowski, Jessica R. A1 - Digel, Ilya A1 - Gossmann, Matthias A1 - Temiz Artmann, Aysegül T1 - rhAPC reduces the endothelial cell permeability via a decrease of cellular mechanical contractile tensions : [abstract] N2 - In this study, the CellDrum technology quanitfying cellular mechanical tension on a pico-scale was used to investigate the effect of LPS (lipopolysaccharide) on HAoEC (Human Aortic Endothelial Cell) tension. KW - Endothelzelle KW - Sepsis KW - kontraktile Spannung KW - rhAPC KW - contractile tension KW - rhAPC KW - celldrum technology Y1 - 2010 ER - TY - CHAP A1 - Dachwald, Bernd A1 - Ohndorf, Andreas A1 - Spurmann, J. A1 - Loeb, H. W. A1 - Schartner, Karl-Heinz A1 - Seboldt, Wolfgang T1 - Mission design for a SEP mission to saturn T2 - 60th International Astronautical Congress 2009 (IAC 2009) N2 - Within ESA's Cosmic Vision 2015-2025 plan, a mission to explore the Saturnian System, with special emphasis on its two moons Titan and Enceladus, was selected for study, termed TANDEM (Titan and Enceladus Mission). In this paper, we describe an optimized mission design for a TANDEM-derived solar electric propulsion (SEP) mission. We have chosen the SEP mission scenario for the interplanetary transfer of the TANDEM spacecraft because all feasible gravity assist sequences for a chemical transfer between 2015 and 2025 result in long flight times of about nine years. Our SEP system is based on the German RIT ion engine. For our optimized mission design, we have extensively explored the SEP parameter space (specific impulse, thrust level, power level) and have calculated an optimal interplanetary trajectory for each setting. In contrast to the original TANDEM mission concept, which intends to use two launch vehicles and an all-chemical transfer, our SEP mission design requires only a single Ariane 5 ECA launch for the same payload mass. Without gravity assist, it yields a faster and more flexible transfer with a fight time of less than seven years, and an increased payload ratio. Our mission design proves thereby the capability of SEP even for missions into the outer solar system. Y1 - 2009 SN - 978-1-61567-908-9 N1 - 12-16 October 2009, Daejeon, Republic of Korea. PB - Curran Associates, Inc. CY - Red Hook, NY ER - TY - CHAP A1 - Dachwald, Bernd A1 - Wurm, P. T1 - Design concept and modeling of an advanced solar photon thruster T2 - Advances in the Astronautical Sciences N2 - The so-called "compound solar sail", also known as "Solar Photon Thruster" (SPT), holds the potential of providing significant performance advantages over the flat solar sail. Previous SPT design concepts, however, do not consider shadowing effects and multiple reflections of highly concentrated solar radiation that would inevitably destroy the gossamer sail film. In this paper, we propose a novel advanced SPT (ASPT) design concept that does not suffer from these oversimplifications. We present the equations that describe the thrust force acting on such a sail system and compare its performance with respect to the conventional flat solar sail. KW - solar sails Y1 - 2009 SN - 978-087703554-1 SN - 00653438 N1 - 19th AAS/AIAA Space Flight Mechanics Meeting; Savannah, GA; United States; 8 February 2009 through 12 February 2009 SP - 723 EP - 740 PB - American Astronautical Society CY - San Diego, Calif. ER - TY - CHAP A1 - Arinkin, Vladimir A1 - Digel, Ilya T1 - Water bridge phenomenon : [abstract] N2 - One of interesting but not well known water properties is related to appearance of highly ordered structures in response to strong electrical field. In 1893 Sir William Armstrong placed a cotton thread between two wine glasses filled with chemically pure water. When high DC voltage was applied between the glasses, a connection consisting of water formed, producing a "water bridge" KW - Hydrodynamik KW - Elektrodynamik KW - Wasserbrücke KW - water bridge phenomenon Y1 - 2009 ER - TY - CHAP A1 - Spurmann, Jörn A1 - Ohndorf, Andreas A1 - Dachwald, Bernd A1 - Seboldt, Wolfgang A1 - Löb, Horst A1 - Schartner, Karl-Heinz T1 - Interplanetary trajectory optimization for a sep mission to Saturn T2 - 60th International Astronautical Congress 2009 N2 - The recently proposed NASA and ESA missions to Saturn and Jupiter pose difficult tasks to mission designers because chemical propulsion scenarios are not capable of transferring heavy spacecraft into the outer solar system without the use of gravity assists. Thus our developed mission scenario based on the joint NASA/ESA Titan Saturn System Mission baselines solar electric propulsion to improve mission flexibility and transfer time. For the calculation of near-globally optimal low-thrust trajectories, we have used a method called Evolutionary Neurocontrol, which is implemented in the low-thrust trajectory optimization software InTrance. The studied solar electric propulsion scenario covers trajectory optimization of the interplanetary transfer including variations of the spacecraft's thrust level, the thrust unit's specific impulse and the solar power generator power level. Additionally developed software extensions enabled trajectory optimization with launcher-provided hyperbolic excess energy, a complex solar power generator model and a variable specific impulse ion engine model. For the investigated mission scenario, Evolutionary Neurocontrol yields good optimization results, which also hold valid for the more elaborate spacecraft models. Compared to Cassini/Huygens, the best found solutions have faster transfer times and a higher mission flexibility in general. KW - Spacecraft KW - Reusable Rocket Engines KW - Hybrid Propellants Y1 - 2009 SN - 9781615679089 N1 - 60th International Astronautical Congress 2009 (IAC 2009) Held 12-16 October 2009, Daejeon, Republic of Korea. SP - 5234 EP - 5248 ER - TY - CHAP A1 - Dachwald, Bernd A1 - Wurm, P. T1 - Mission analysis for an advanced solar photon thruster T2 - 60th International Astronautical Congress 2009, IAC 2009 N2 - The so-called "compound solar sail", also known as "Solar Photon Thruster" (SPT), is a solar sail design concept, for which the two basic functions of the solar sail, namely light collection and thrust direction, are uncoupled. In this paper, we introduce a novel SPT concept, termed the Advanced Solar Photon Thruster (ASPT). This model does not suffer from the simplified assumptions that have been made for the analysis of compound solar sails in previous studies. We present the equations that describe the force, which acts on the ASPT. After a detailed design analysis, the performance of the ASPT with respect to the conventional flat solar sail (FSS) is investigated for three interplanetary mission scenarios: An Earth-Venus rendezvous, where the solar sail has to spiral towards the Sun, an Earth-Mars rendezvous, where the solar sail has to spiral away from the Sun, and an Earth-NEA rendezvous (to near-Earth asteroid 1996FG3), where a large orbital eccentricity change is required. The investigated solar sails have realistic near-term characteristic accelerations between 0.1 and 0.2mm/s2. Our results show that a SPT is not superior to the flat solar sail unless very idealistic assumptions are made. KW - Interplanetary flight Y1 - 2009 SN - 978-161567908-9 N1 - 60th International Astronautical Congress 2009, IAC 2009; Daejeon; South Korea; 12 October 2009 through 16 October 2009 VL - 8 SP - 6838 EP - 6851 PB - Elsevier CY - Amsterdam ER - TY - CHAP A1 - Schartner, Karl-Heinz A1 - Loeb, H. W. A1 - Dachwald, Bernd A1 - Ohndorf, Andreas T1 - Perspectives of electric propulsion for outer planetary and deep space missions T2 - European Planetary Science Congress 2009 N2 - Solar-electric propulsion (SEP) is superior with respect to payload capacity, flight time and flexible launch window to the conventional interplanetary transfer method using chemical propulsion combined with gravity assists. This fact results from the large exhaust velocities of electric low–thrust propulsion and is favourable also for missions to the giant planets, Kuiper-belt objects and even for a heliopause probe (IHP) as shown in three studies by the authors funded by DLR. They dealt with a lander for Europa and a sample return mission from a mainbelt asteroid [1], with the TANDEM mission [2]; the third recent one investigates electric propulsion for the transfer to the edge of the solar system. All studies are based on triple-junction solar arrays, on rf-ion thrusters of the qualified RIT-22 type and they use the intelligent trajectory optimization program InTrance [3]. Y1 - 2009 N1 - European Planetary Science Congress 2009, 13-18 September, Potsdam, Germany SP - 416 EP - 416 ER - TY - CHAP A1 - O\'Heras, Carlos A1 - Digel, Ilya A1 - Temiz Artmann, Aysegül T1 - Nanostructured carbon-based column for LPS/protein adsorption : [abstract] N2 - The absence of a general method for endotoxin removal from liquid interfaces gives an opportunity to find new methods and materials to overcome this gap. Activated nanostructured carbon is a promising material that showed good adsorption properties due to its vast pore network and high surface area. The aim of this study is to find the adsorption rates for a carboneous material produced at different temperatures, as well as to reveal possible differences between the performance of the material for each of the adsorbates used during the study (hemoglobin, serum albumin and lipopolysaccharide, LPS). KW - Kohlenstofffaser KW - Adsorption KW - Lipopolysaccharide KW - aktivierte nanostrukturierte Kohlenstofffaser KW - lipopolysaccharides KW - activated nanostructured carbon Y1 - 2009 ER - TY - CHAP A1 - ElBashir, Rasha A1 - Digel, Ilya T1 - Effect of nitric oxide gas on hydrogels : [abstract] N2 - The results support our theory that the NO gas has an influence in increasing the translational diffusion of hydrogels and it accelerates the melting process of the gels. KW - Stickstoffmonoxid KW - Hydrogel KW - nitric oxide gas KW - hydrogel Y1 - 2009 ER - TY - CHAP A1 - Bassam, Rasha A1 - Digel, Ilya A1 - Artmann, Gerhard T1 - Effect of nitric oxide on protein thermal stability : [abstract] N2 - As a deduction from these results, we can conclude that proteins mainly in vitro, denaturate totally at a temperature between 57°C -62°C, and they also affected by NO and different ions types. In which mainly, NO cause earlier protein denaturation, which means that, NO has a destabilizing effect on proteins, and also different ions will alter the protein denaturation in which, some ions will cause earlier protein denaturation while others not. KW - Stickstoffmonoxid KW - Proteine KW - Hämoglobin KW - nitric oxide gas KW - protein KW - hemoglobin Y1 - 2009 ER - TY - CHAP A1 - Gehler, M. A1 - Ober-Blöbaum, S. A1 - Dachwald, Bernd T1 - Application of discrete mechanics and optimal control to spacecraft in non-keplerian motion around small solar system bodies T2 - Procceedings of the 60th International Astronautical Congress N2 - Prolonged operations close to small solar system bodies require a sophisticated control logic to minimize propellant mass and maximize operational efficiency. A control logic based on Discrete Mechanics and Optimal Control (DMOC) is proposed and applied to both conventionally propelled and solar sail spacecraft operating at an arbitrarily shaped asteroid in the class of Itokawa. As an example, stand-off inertial hovering is considered, recently identified as a challenging part of the Marco Polo mission. The approach is easily extended to stand-off orbits. We show that DMOC is applicable to spacecraft control at small objects, in particular with regard to the fact that the changes in gravity are exploited by the algorithm to optimally control the spacecraft position. Furthermore, we provide some remarks on promising developments. KW - Spacecraft Y1 - 2009 SN - 978-161567908-9 N1 - 60th International Astronautical Congress 2009, IAC 2009; Daejeon; South Korea; 12 October 2009 through 16 October 2009 SP - 1360 EP - 1371 PB - Elsevier CY - Amsterdam ER -