TY - JOUR A1 - Dantism, Shahriar A1 - Röhlen, Desiree A1 - Wagner, Torsten A1 - Wagner, Patrick A1 - Schöning, Michael Josef T1 - Optimization of Cell-Based Multi-Chamber LAPS Measurements Utilizing FPGA-Controlled Laser-Diode Modules JF - physica status solidi a : applications and materials sciences N2 - A light-addressable potentiometric sensor (LAPS) is a field-effect-based potentiometric device, which detects concentration changes of an analyte solution on the sensor surface in a spatially resolved way. It uses a light source to generate electron–hole pairs inside the semiconductor, which are separated in the depletion region due to an applied bias voltage across the sensor structure and hence, a surface-potential-dependent photocurrent can be read out. However, depending on the beam angle of the light source, scattering effects can occur, which influence the recorded signal in LAPS-based differential measurements. To solve this problem, a novel illumination unit based on a field programmable gate array (FPGA) consisting of 16 small-sized tunable infrared laser-diode modules (LDMs) is developed. Due to the improved focus of the LDMs with a beam angle of only 2 mrad, undesirable scattering effects are minimized. Escherichia coli (E. coli) K12 bacteria are used as a test microorganism to study the extracellular acidification on the sensor surface. Furthermore, a salt bridge chamber is built up and integrated with the LAPS system enabling multi-chamber differential measurements with a single Ag/AgCl reference electrode. Y1 - 2018 U6 - http://dx.doi.org/10.1002/pssa.201800058 SN - 1862-6319 VL - 215 IS - 15 SP - Article number 1800058 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Molinnus, Denise A1 - Hardt, G. A1 - Käver, L. A1 - Willenberg, H.S. A1 - Kröger, J.-C. A1 - Poghossian, Arshak A1 - Keusgen, Michael A1 - Schöning, Michael Josef T1 - Chip-based biosensor for the detection of low adrenaline concentrations to support adrenal venous sampling JF - Sensor and Actuators B: Chemical N2 - A chip-based amperometric biosensor referring on using the bioelectrocatalytical amplification principle for the detection of low adrenaline concentrations is presented. The adrenaline biosensor has been prepared by modification of a platinum thin-film electrode with an enzyme membrane containing the pyrroloquinoline quinone-dependent glucose dehydrogenase and glutaraldehyde. Measuring conditions such as temperature, pH value, and glucose concentration have been optimized to achieve a high sensitivity and a low detection limit of about 1 nM adrenaline measured in phosphate buffer at neutral pH value. The response of the biosensor to different catecholamines has also been proven. Long-term stability of the adrenaline biosensor has been studied over 10 days. In addition, the biosensor has been successfully applied for adrenaline detection in human blood plasma for future biomedical applications. Furthermore, preliminary experiments have been carried to detect the adrenaline-concentration difference measured in peripheral blood and adrenal venous blood, representing the adrenal vein sampling procedure of a physician. Y1 - 2018 U6 - http://dx.doi.org/10.1016/j.snb.2018.05.136 SN - 0925-4005 VL - 272 SP - 21 EP - 27 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Funke, Harald A1 - Beckmann, Nils A1 - Keinz, Jan A1 - Abanteriba, Sylvester T1 - Comparison of Numerical Combustion Models for Hydrogen and Hydrogen-Rich Syngas Applied for Dry-Low-Nox-Micromix-Combustion JF - Journal of Engineering for Gas Turbines and Power N2 - The Dry-Low-NOx (DLN) Micromix combustion technology has been developed as low emission combustion principle for industrial gas turbines fueled with hydrogen or syngas. The combustion process is based on the phenomenon of jet-in-crossflow-mixing (JICF). Fuel is injected perpendicular into the air-cross-flow and burned in a multitude of miniaturized, diffusion-like flames. The miniaturization of the flames leads to a significant reduction of NOx emissions due to the very short residence time of reactants in the flame. In the Micromix research approach, computational fluid dynamics (CFD) analyses are validated toward experimental results. The combination of numerical and experimental methods allows an efficient design and optimization of DLN Micromix combustors concerning combustion stability and low NOx emissions. The paper presents a comparison of several numerical combustion models for hydrogen and hydrogen-rich syngas. They differ in the complexity of the underlying reaction mechanism and the associated computational effort. The performance of a hybrid eddy-break-up (EBU) model with a one-step global reaction is compared to a complex chemistry model and a flamelet generated manifolds (FGM) model, both using detailed reaction schemes for hydrogen or syngas combustion. Validation of numerical results is based on exhaust gas compositions available from experimental investigation on DLN Micromix combustors. The conducted evaluation confirms that the applied detailed combustion mechanisms are able to predict the general physics of the DLN-Micromix combustion process accurately. The FGM method proved to be generally suitable to reduce the computational effort while maintaining the accuracy of detailed chemistry. Y1 - 2018 U6 - http://dx.doi.org/10.1115/1.4038882 SN - 0742-4795 N1 - Article number 081504; Paper No: GTP-17-1567 VL - 140 IS - 8 PB - ASME CY - New York, NY ER - TY - CHAP A1 - Bhattarai, Aroj A1 - Staat, Manfred ED - Artmann, Gerhard ED - Temiz Artmann, Aysegül ED - Zhubanova, Azhar A. ED - Digel, Ilya T1 - Mechanics of soft tissue reactions to textile mesh implants T2 - Biological, Physical and Technical Basics of Cell Engineering N2 - For pelvic floor disorders that cannot be treated with non-surgical procedures, minimally invasive surgery has become a more frequent and safer repair procedure. More than 20 million prosthetic meshes are implanted each year worldwide. The simple selection of a single synthetic mesh construction for any level and type of pelvic floor dysfunctions without adopting the design to specific requirements increase the risks for mesh related complications. Adverse events are closely related to chronic foreign body reaction, with enhanced formation of scar tissue around the surgical meshes, manifested as pain, mesh erosion in adjacent structures (with organ tissue cut), mesh shrinkage, mesh rejection and eventually recurrence. Such events, especially scar formation depend on effective porosity of the mesh, which decreases discontinuously at a critical stretch when pore areas decrease making the surgical reconstruction ineffective that further augments the re-operation costs. The extent of fibrotic reaction is increased with higher amount of foreign body material, larger surface, small pore size or with inadequate textile elasticity. Standardized studies of different meshes are essential to evaluate influencing factors for the failure and success of the reconstruction. Measurements of elasticity and tensile strength have to consider the mesh anisotropy as result of the textile structure. An appropriate mesh then should show some integration with limited scar reaction and preserved pores that are filled with local fat tissue. This chapter reviews various tissue reactions to different monofilament mesh implants that are used for incontinence and hernia repairs and study their mechanical behavior. This helps to predict the functional and biological outcomes after tissue reinforcement with meshes and permits further optimization of the meshes for the specific indications to improve the success of the surgical treatment. Y1 - 2018 SN - 978-981-10-7904-7 U6 - http://dx.doi.org/10.1007/978-981-10-7904-7_11 SP - 251 EP - 275 PB - Springer CY - Singapore ER - TY - CHAP A1 - Artmann, Gerhard A1 - Meruvu, Haritha A1 - Kizildag, Sefa A1 - Temiz Artmann, Aysegül ED - Artmann, Gerhard ED - Temiz Artmann, Aysegül ED - Zhubanova, Azhar A. ED - Digel, Ilya T1 - Functional Toxicology and Pharmacology Test of Cell Induced Mechanical Tensile Stress in 2D and 3D Tissue Cultures T2 - Biological, Physical and Technical Basics of Cell Engineering N2 - Mechanical forces/tensile stresses are critical determinants of cellular growth, differentiation and migration patterns in health and disease. The innovative “CellDrum technology” was designed for measuring mechanical tensile stress of cultured cell monolayers/thin tissue constructs routinely. These are cultivated on very thin silicone membranes in the so-called CellDrum. The cell layers adhere firmly to the membrane and thus transmit the cell forces generated. A CellDrum consists of a cylinder which is sealed from below with a 4 μm thick, biocompatible, functionalized silicone membrane. The weight of cell culture medium bulbs the membrane out downwards. Membrane indentation is measured. When cells contract due to drug action, membrane, cells and medium are lifted upwards. The induced indentation changes allow for lateral drug induced mechanical tension quantification of the micro-tissues. With hiPS-induced (human) Cardiomyocytes (CM) the CellDrum opens new perspectives of individualized cardiac drug testing. Here, monolayers of self-beating hiPS-CMs were grown in CellDrums. Rhythmic contractions of the hiPS-cells induce membrane up-and-down deflections. The recorded cycles allow for single beat amplitude, single beat duration, integration of the single beat amplitude over the beat time and frequency analysis. Dose effects of agonists and antagonists acting on Ca2+ channels were sensitively and highly reproducibly observed. Data were consistent with published reference data as far as they were available. The combination of the CellDrum technology with hiPS-Cardiomyocytes offers a fast, facile and precise system for pharmacological and toxicological studies. It allows new preclinical basic as well as applied research in pharmacolgy and toxicology. Y1 - 2018 SN - 978-981-10-7904-7 U6 - http://dx.doi.org/10.1007/978-981-10-7904-7_7 SP - 157 EP - 192 PB - Springer CY - Singapore ER - TY - CHAP A1 - Duong, Minh Tuan A1 - Seifarth, Volker A1 - Temiz Artmann, Aysegül A1 - Artmann, Gerhard A1 - Staat, Manfred ED - Artmann, Gerhard ED - Temiz Artmann, Aysegül ED - Zhubanova, Azhar A. ED - Digel, Ilya T1 - Growth Modelling Promoting Mechanical Stimulation of Smooth Muscle Cells of Porcine Tubular Organs in a Fibrin-PVDF Scaffold T2 - Biological, Physical and Technical Basics of Cell Engineering N2 - Reconstructive surgery and tissue replacements like ureters or bladders reconstruction have been recently studied, taking into account growth and remodelling of cells since living cells are capable of growing, adapting, remodelling or degrading and restoring in order to deform and respond to stimuli. Hence, shapes of ureters or bladders and their microstructure change during growth and these changes strongly depend on external stimuli such as training. We present the mechanical stimulation of smooth muscle cells in a tubular fibrin-PVDFA scaffold and the modelling of the growth of tissue by stimuli. To this end, mechanotransduction was performed with a kyphoplasty balloon catheter that was guided through the lumen of the tubular structure. The bursting pressure was examined to compare the stability of the incubated tissue constructs. The results showed the significant changes on tissues with training by increasing the burst pressure as a characteristic mechanical property and the smooth muscle cells were more oriented with uniformly higher density. Besides, the computational growth models also exhibited the accurate tendencies of growth of the cells under different external stimuli. Such models may lead to design standards for the better layered tissue structure in reconstructing of tubular organs characterized as composite materials such as intestines, ureters and arteries. KW - Mechanical simulation KW - Growth modelling KW - Ureter KW - Bladder KW - Reconstruction Y1 - 2018 SN - 978-981-10-7904-7 U6 - http://dx.doi.org/10.1007/978-981-10-7904-7_9 SP - 209 EP - 232 PB - Springer CY - Singapore ER - TY - CHAP A1 - Frotscher, Ralf A1 - Staat, Manfred ED - Artmann, Gerhard ED - Temiz Artmann, Aysegül ED - Zhubanova, Azhar A. ED - Digel, Ilya T1 - Towards Patient-Specific Computational Modeling of hiPS-Derived Cardiomyocyte Function and Drug Action T2 - Biological, Physical and Technical Basics of Cell Engineering N2 - Human-induced pluripotent stem cell-derived cardiomyocytes (hiPS-CM) today are widely used for the investigation of normal electromechanical cardiac function, of cardiac medication and of mutations. Computational models are thus established that simulate the behavior of this kind of cells. This section first motivates the modeling of hiPS-CM and then presents and discusses several modeling approaches of microscopic and macroscopic constituents of human-induced pluripotent stem cell-derived and mature human cardiac tissue. The focus is led on the mapping of the computational results one can achieve with these models onto mature human cardiomyocyte models, the latter being the real matter of interest. Model adaptivity is the key feature that is discussed because it opens the way for modeling various biological effects like biological variability, medication, mutation and phenotypical expression. We compare the computational with experimental results with respect to normal cardiac function and with respect to inotropic and chronotropic drug effects. The section closes with a discussion on the status quo of the specificity of computational models and on what challenges have to be solved to reach patient-specificity. Y1 - 2018 SN - 978-981-10-7904-7 U6 - http://dx.doi.org/10.1007/978-981-10-7904-7_10 SP - 233 EP - 250 PB - Springer CY - Singapore ER - TY - CHAP A1 - Digel, Ilya A1 - Akimbekov, Nuraly Sh. A1 - Kistaubayeva, Aida A1 - Zhubanova, Azhar A. ED - Artmann, Gerhard ED - Temiz Artmann, Aysegül ED - Zhubanova, Azhar A. ED - Digel, Ilya T1 - Microbial Sampling from Dry Surfaces: Current Challenges and Solutions T2 - Biological, Physical and Technical Basics of Cell Engineering N2 - Sampling of dry surfaces for microorganisms is a main component of microbiological safety and is of critical importance in many fields including epidemiology, astrobiology as well as numerous branches of medical and food manufacturing. Aspects of biofilm formation, analysis and removal in aqueous solutions have been thoroughly discussed in literature. In contrast, microbial communities on air-exposed (dry) surfaces have received significantly less attention. Diverse surface sampling methods have been developed in order to address various surfaces and microbial groups, but they notoriously show poor repeatability, low recovery rates and suffer from lack of mutual consistency. Quantitative sampling for viable microorganisms represents a particular challenge, especially on porous and irregular surfaces. Therefore, it is essential to examine in depth the factors involved in microorganisms’ recovery efficiency and accuracy depending on the sampling technique used. Microbial colonization, retention and community composition on different dry surfaces are very complex and rely on numerous physicochemical and biological factors. This study is devoted to analyze and review the (a) physical phenomena and intermolecular forces relevant for microbiological surface sampling; (b) challenges and problems faced by existing sampling methods for viable microorganisms and (c) current directions of engineering and research aimed at improvement of quality and efficiency of microbiological surface sampling. KW - Sampling methods KW - Surface microorganisms KW - Dry surfaces KW - Microbial adhesion KW - Swabbing Y1 - 2018 SN - 978-981-10-7904-7 U6 - http://dx.doi.org/10.1007/978-981-10-7904-7_19 SP - 421 EP - 456 PB - Springer CY - Singapore ER - TY - PAT A1 - Heuermann, Holger A1 - Hüning, Felix A1 - Wache, Franz-Josef T1 - Bussystem sowie Kommunikationsverfahren N2 - Die Erfindung betrifft ein Bussystem enthaltend Busleitungen, an denen eine Anzahl von Busteilnehmern über einen Transceiver anschließbar sind, wobei der Transceiver eine bidirektionale Kommunikation zwischen mindestens zwei Busteilnehmern bewirkt, wobei auf einer busabgewandten Seite des Transceivers sich an denselben eine Zwischenbrückeneinheit anschließt, die mindestens zwei Sender-/Empfänger-Paare enthaltend jeweils einen Sender und einen Empfänger aufweist, wobei der Sender einen Senderoszillator, eine Amplituden- und/oder Phasen- und/oder Frequenzmodulator sowie eine Antenne aufweist und wobei der Empfänger einen Mischer aufweisenden Demodulator sowie eine Antenne aufweist, wobei ein erstes Sender-/Empfänger-Paar über eine Funkschnittstelle mit dem zweiten Sender-/Empfänger-Paar miteinander gekoppelt sind. Y1 - 2018 N1 - Patent WO002018046055A1 ER - TY - CHAP A1 - Harzheim, Thomas A1 - Heuermann, Holger T1 - Phase Repeatable Synthesizers as a New Harmonic Phase Standard for Nonlinear Network Analysis T2 - IEEE Transactions on Microwave Theory and Techniques Y1 - 2018 U6 - http://dx.doi.org/10.1109/TMTT.2018.2817513 SP - 1 EP - 8 PB - IEEE ER - TY - JOUR A1 - Welden, Rene A1 - Scheja, Sabrina A1 - Schöning, Michael Josef A1 - Wagner, Patrick A1 - Wagner, Torsten T1 - Electrochemical Evaluation of Light‐Addressable Electrodes Based on TiO2 for the Integration in Lab‐on‐Chip Systems JF - physica status solidi a : applications and materials sciences N2 - In lab-on-chip systems, electrodes are important for the manipulation (e.g., cell stimulation, electrolysis) within such systems. An alternative to commonly used electrode structures can be a light-addressable electrode. Here, due to the photoelectric effect, the conducting area can be adjusted by modification of the illumination area which enables a flexible control of the electrode. In this work, titanium dioxide based light-addressable electrodes are fabricated by a sol–gel technique and a spin-coating process, to deposit a thin film on a fluorine-doped tin oxide glass. To characterize the fabricated electrodes, the thickness, and morphological structure are measured by a profilometer and a scanning electron microscope. For the electrochemical behavior, the dark current and the photocurrent are determined for various film thicknesses. For the spatial resolution behavior, the dependency of the photocurrent while changing the area of the illuminated area is studied. Furthermore, the addressing of single fluid compartments in a three-chamber system, which is added to the electrode, is demonstrated. Y1 - 2018 U6 - http://dx.doi.org/10.1002/pssa.201800150 SN - 1862-6319 VL - 215 IS - 15 SP - Article number 1800150 PB - Wiley-VCH CY - Weinheim ER - TY - CHAP A1 - Koch, Claudia A1 - Poghossian, Arshak A1 - Wege, Christina A1 - Schöning, Michael Josef ED - Wege, Christina T1 - TMV-Based Adapter Templates for Enhanced Enzyme Loading in Biosensor Applications T2 - Virus-Derived Nanoparticles for Advanced Technologies N2 - Nanotubular tobacco mosaic virus (TMV) particles and RNA-free lower-order coat protein (CP) aggregates have been employed as enzyme carriers in different diagnostic layouts and compared for their influence on biosensor performance. In the following, we describe a label-free electrochemical biosensor for improved glucose detection by use of TMV adapters and the enzyme glucose oxidase (GOD). A specific and efficient immobilization of streptavidin-conjugated GOD ([SA]-GOD) complexes on biotinylated TMV nanotubes or CP aggregates was achieved via bioaffinity binding. Glucose sensors with adsorptively immobilized [SA]-GOD, and with [SA]-GOD cross-linked with glutardialdehyde, respectively, were tested in parallel on the same sensor chip. Comparison of these sensors revealed that TMV adapters enhanced the amperometric glucose detection remarkably, conveying highest sensitivity, an extended linear detection range and fastest response times. These results underline a great potential of an integration of virus/biomolecule hybrids with electronic transducers for applications in biosensorics and biochips. Here, we describe the fabrication and use of amperometric sensor chips combining an array of circular Pt electrodes, their loading with GOD-modified TMV nanotubes (and other GOD immobilization methods), and the subsequent investigations of the sensor performance. KW - Tobacco mosaic virus (TMV) KW - Coat protein KW - Enzyme nanocarrier KW - Glucose biosensor KW - Glucose oxidase Y1 - 2018 SN - 978-1-4939-7808-3 U6 - http://dx.doi.org/10.1007/978-1-4939-7808-3 N1 - Methods in Molecular Biology, vol 1776 SP - 553 EP - 568 PB - Humana Press CY - New York, NY ER - TY - JOUR A1 - Michaux, F. A1 - Mattern, P. A1 - Kallweit, Stephan T1 - RoboPIV: how robotics enable PIV on a large industrial scale JF - Measurement Science and Technology N2 - This work demonstrates how the interaction between particle image velocimetry (PIV) and robotics can massively increase measurement efficiency. The interdisciplinary approach is shown using the complex example of an automated, large scale, industrial environment: a typical automotive wind tunnel application. Both the high degree of flexibility in choosing the measurement region and the complete automation of stereo PIV measurements are presented. The setup consists of a combination of three robots, individually used as a 6D traversing unit for the laser illumination system as well as for each of the two cameras. Synchronised movements in the same reference frame are realised through a master-slave setup with a single interface to the user. By integrating the interface into the standard wind tunnel management system, a single measurement plane or a predefined sequence of several planes can be requested through a single trigger event, providing the resulting vector fields within minutes. In this paper, a brief overview on the demands of large scale industrial PIV and the existing solutions is given. Afterwards, the concept of RoboPIV is introduced as a new approach. In a first step, the usability of a selection of commercially available robot arms is analysed. The challenges of pose uncertainty and importance of absolute accuracy are demonstrated through comparative measurements, explaining the individual pros and cons of the analysed systems. Subsequently, the advantage of integrating RoboPIV directly into the existing wind tunnel management system is shown on basis of a typical measurement sequence. In a final step, a practical measurement procedure, including post-processing, is given by using real data and results. Ultimately, the benefits of high automation are demonstrated, leading to a drastic reduction in necessary measurement time compared to non-automated systems, thus massively increasing the efficiency of PIV measurements. Y1 - 2018 U6 - http://dx.doi.org/10.1088/1361-6501/aab5c1 SN - 1361-6501 N1 - Special Section on the 12th International Symposium on Particle Image Velocimetry (PIV 2017) VL - 29 IS - 7 SP - 074009 PB - IOP CY - Bristol ER - TY - CHAP A1 - Schulze, Sven A1 - Mühleisen, M. A1 - Feyerl, Günter T1 - Adaptive energy management strategy for a heavy-duty truck with a P2-hybrid topology T2 - 18. Internationales Stuttgarter Symposium. Proceedings Y1 - 2018 U6 - http://dx.doi.org/10.1007/978-3-658-21194-3 SP - 75 EP - 89 PB - Springer Vieweg CY - Wiesbaden ER - TY - JOUR A1 - Bronder, Thomas A1 - Jessing, Max P. A1 - Poghossian, Arshak A1 - Keusgen, Michael A1 - Schöning, Michael Josef T1 - Detection of PCR-Amplified Tuberculosis DNA Fragments with Polyelectrolyte-Modified Field-Effect Sensors JF - Analytical Chemistry N2 - Field-effect-based electrolyte-insulator-semiconductor (EIS) sensors were modified with a bilayer of positively charged weak polyelectrolyte (poly(allylamine hydrochloride) (PAH)) and probe single-stranded DNA (ssDNA) and are used for the detection of complementary single-stranded target DNA (cDNA) in different test solutions. The sensing mechanism is based on the detection of the intrinsic molecular charge of target cDNA molecules after the hybridization event between cDNA and immobilized probe ssDNA. The test solutions contain synthetic cDNA oligonucleotides (with a sequence of tuberculosis mycobacteria genome) or PCR-amplified DNA (which origins from a template DNA strand that has been extracted from Mycobacterium avium paratuberculosis-spiked human sputum samples), respectively. Sensor responses up to 41 mV have been measured for the test solutions with DNA, while only small signals of ∼5 mV were detected for solutions without DNA. The lower detection limit of the EIS sensors was ∼0.3 nM, and the sensitivity was ∼7.2 mV/decade. Fluorescence experiments using SybrGreen I fluorescence dye support the electrochemical results. Y1 - 2018 U6 - http://dx.doi.org/10.1021/acs.analchem.8b01807 SN - 0003-2700 VL - 90 IS - 12 SP - 7747 EP - 7753 PB - ACS Publications CY - Washington, DC ER - TY - JOUR A1 - Jildeh, Zaid B. A1 - Oberländer, Jan A1 - Kirchner, Patrick A1 - Keusgen, Michael A1 - Wagner, Patrick H. A1 - Schöning, Michael Josef T1 - Experimental and Numerical Analyzes of a Sensor Based on Interdigitated Electrodes for Studying Microbiological Alterations JF - physica status solidi (a): applications and materials science N2 - In this work, a cell-based biosensor to evaluate the sterilization efficacy of hydrogen peroxide vapor sterilization processes is characterized. The transducer of the biosensor is based on interdigitated gold electrodes fabricated on an inert glass substrate. Impedance spectroscopy is applied to evaluate the sensor behavior and the alteration of test microorganisms due to the sterilization process. These alterations are related to changes in relative permittivity and electrical conductivity of the bacterial spores. Sensor measurements are conducted with and without bacterial spores (Bacillus atrophaeus), as well as after an industrial sterilization protocol. Equivalent two-dimensional numerical models based on finite element method of the periodic finger structures of the interdigitated gold electrodes are designed and validated using COMSOL® Multiphysics software by the application of known dielectric properties. The validated models are used to compute the electrical properties at different sensor states (blank, loaded with spores, and after sterilization). As a final result, we will derive and tabulate the frequency-dependent electrical parameters of the spore layer using a novel model that combines experimental data with numerical optimization techniques. Y1 - 2018 U6 - http://dx.doi.org/10.1002/pssa.201700920 SN - 1862-6319 VL - 215 IS - 15 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Jildeh, Zaid B. A1 - Oberländer, Jan A1 - Kirchner, Patrick A1 - Wagner, Patrick H. A1 - Schöning, Michael Josef T1 - Thermocatalytic Behavior of Manganese (IV) Oxide as Nanoporous Material on the Dissociation of a Gas Mixture Containing Hydrogen Peroxide JF - Nanomaterials N2 - In this article, we present an overview on the thermocatalytic reaction of hydrogen peroxide (H₂O₂) gas on a manganese (IV) oxide (MnO₂) catalytic structure. The principle of operation and manufacturing techniques are introduced for a calorimetric H₂O₂ gas sensor based on porous MnO₂. Results from surface analyses by X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM) of the catalytic material provide indication of the H₂O₂ dissociation reaction schemes. The correlation between theory and the experiments is documented in numerical models of the catalytic reaction. The aim of the numerical models is to provide further information on the reaction kinetics and performance enhancement of the porous MnO₂ catalyst. Y1 - 2018 U6 - http://dx.doi.org/10.3390/nano8040262 SN - 2079-4991 VL - 8 IS - 4 PB - MDPI CY - Basel ER - TY - JOUR A1 - Aboulnaga, E. A. A1 - Zou, H. A1 - Selmer, Thorsten A1 - Xian, M. T1 - Development of a plasmid-based, tunable, tolC-derived expression system for application in Cupriavidus necator H16 JF - Journal of Biotechnology N2 - Cupriavidus necator H16 gains increasing attention in microbial research and biotechnological application due to its diverse metabolic features. Here we present a tightly controlled gene expression system for C. necator including the pBBR1-vector that contains hybrid promoters originating from C. necator native tolC-promoter in combination with a synthetic tetO-operator. The expression of the reporter gene from these plasmids relies on the addition of the exogenous inducer doxycycline (dc). The novel expression system offers a combination of advantageous features as; (i) high and dose-dependent recombinant protein production, (ii) tight control with a high dynamic range (On/Off ratio), which makes it applicable for harmful pathways or for toxic protein production, (iii) comparable cheap inducer (doxycycline, dc), (iv) effective at low inducer concentration, that makes it useful for large scale application, (v) rapid, diffusion controlled induction, and (vi) the inducer does not interfere within the cell metabolism. As applications of the expression system in C. necator H16, the growth ability on glycerol was enhanced by constitutively expressing the E. coli glpk gene-encoding for glycerol kinase. Likewise, we used the system to overcome the expression toxicity of mevalonate pathway in C. necator H16. With this system, the mevalonate-genes were successfully introduced in the host and the recombinant strains could produce about 200 mg/l mevalonate. Y1 - 2018 U6 - http://dx.doi.org/10.1016/j.jbiotec.2018.03.007 SN - 0168-1656 VL - 274 SP - 15 EP - 27 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Röth, Thilo A1 - Pielen, Michael A1 - Wolff, Klaus A1 - Lüdiger, Thomas T1 - Urbane Fahrzeugkonzepte für die Shared Mobility JF - Automobiltechnische Zeitschrift - ATZ N2 - Urbane Mobilitätskonzepte der Zukunft erfordern neue Unternehmensformen, idealerweise aus Old Economy und New Economy, sowie eine enge Anbindung an die gesellschaftsrelevante Zukunftsforschung. Für neue Fahrzeugkonzepte des Carsharing bedeutet dies, dass alle kostenverursachenden Faktoren erfasst und analysiert werden müssen. Die FH Aachen, share2drive und FEV geben einen Ausblick auf die zukünftige Fahrzeugklasse der Personal Public Vehicles als „Rolling Device“. Y1 - 2018 U6 - http://dx.doi.org/10.1007/s35148-017-0176-8 SN - 0001-2785 VL - 120 IS - 1 SP - 18 EP - 23 PB - Springer Vieweg CY - Wiesbaden ER - TY - CHAP A1 - Scholl, Ingrid A1 - Suder, Sebastian A1 - Schiffer, Stefan T1 - Direct Volume Rendering in Virtual Reality T2 - Bildverarbeitung für die Medizin 2018 Y1 - 2018 SN - 978-3-662-56537-7 U6 - http://dx.doi.org/10.1007/978-3-662-56537-7_79 SP - 297 EP - 302 PB - Springer Vieweg CY - Berlin ER -