TY - CHAP A1 - Iomdina, Elena N. A1 - Kiseleva, Anna A. A1 - Kotliar, Konstantin A1 - Luzhnov, Petr V. T1 - Quantification of Choroidal Blood Flow Using the OCT-A System Based on Voxel Scan Processing T2 - Proceedings of the International Conference on Biomedical Innovations and Applications- BIA 2020 N2 - The paper presents a method for the quantitative assessment of choroidal blood flow using an OCT-A system. The developed technique for processing of OCT-A scans is divided into two stages. At the first stage, the identification of the boundaries in the selected portion was performed. At the second stage, each pixel mark on the selected layer was represented as a volume unit, a voxel, which characterizes the region of moving blood. Three geometric shapes were considered to represent the voxel. On the example of one OCT-A scan, this work presents a quantitative assessment of the blood flow index. A possible modification of two-stage algorithm based on voxel scan processing is presented. Y1 - 2020 SN - 978-1-7281-7073-2 U6 - https://doi.org/10.1109/BIA50171.2020.9244511 N1 - International Conference on Biomedical Innovations and Applications, Varna, Bulgaria, September 24 - 27, 2020 SP - 41 EP - 44 PB - IEEE CY - New York, NY ER - TY - CHAP A1 - Haugg, Albert Thomas A1 - Kreyer, Jörg A1 - Kemper, Hans A1 - Hatesuer, Katerina A1 - Esch, Thomas T1 - Heat exchanger for ORC. adaptability and optimisation potentials T2 - IIR International Rankine 2020 Conference N2 - The recovery of waste heat requires heat exchangers to extract it from a liquid or gaseous medium into another working medium, a refrigerant. In Organic Rankine Cycles (ORC) on Combustion Engines there are two major heat sources, the exhaust gas and the water/glycol fluid from the engine’s cooling circuit. A heat exchanger design must be adapted to the different requirements and conditions resulting from the heat sources, fluids, system configurations, geometric restrictions, and etcetera. The Stacked Shell Cooler (SSC) is a new and very specific design of a plate heat exchanger, created by AKG, which allows with a maximum degree of freedom the optimization of heat exchange rate and the reduction of the related pressure drop. This optimization in heat exchanger design for ORC systems is even more important, because it reduces the energy consumption of the system and therefore maximizes the increase in overall efficiency of the engine. Y1 - 2020 U6 - https://doi.org/10.18462/iir.rankine.2020.1224 N1 - IIR International Rankine 2020 Conference - Heating, Cooling, Power Generation. Glasgow, 2020. ER -