TY - JOUR A1 - Maurischat, Andreas T1 - Algebraic independence of the Carlitz period and its hyperderivatives JF - Journal of Number Theory KW - Drinfeld modules KW - Periods KW - t-modules KW - Transcendence KW - Higher derivations Y1 - 2022 U6 - https://doi.org/10.1016/j.jnt.2022.01.006 SN - 0022-314X VL - 240 SP - 145 EP - 162 PB - Elsevier CY - Orlando, Fla. ER - TY - CHAP A1 - Horikawa, Atsushi A1 - Ashikaga, Mitsugu A1 - Yamaguchi, Masato A1 - Ogino, Tomoyuki A1 - Aoki, Shigeki A1 - Wirsum, Manfred A1 - Funke, Harald A1 - Kusterer, Karsten T1 - Combined heat and power supply demonstration of Micro-Mix Hydrogen Combustion Applied to M1A-17 Gas Turbine T2 - Proceedings of ASME Turbo Expo 2022: Turbomachinery Technical Conference and Exposition (GT2022) (Volume 3A) N2 - Kawasaki Heavy Industries, Ltd. (KHI), Aachen University of Applied Sciences, and B&B-AGEMA GmbH have investigated the potential of low NOx micro-mix (MMX) hydrogen combustion and its application to an industrial gas turbine combustor. Engine demonstration tests of a MMX combustor for the M1A-17 gas turbine with a co-generation system were conducted in the hydrogen-fueled power generation plant in Kobe City, Japan. This paper presents the results of the commissioning test and the combined heat and power (CHP) supply demonstration. In the commissioning test, grid interconnection, loading tests and load cut-off tests were successfully conducted. All measurement results satisfied the Japanese environmental regulation values. Dust and soot as well as SOx were not detected. The NOx emissions were below 84 ppmv at 15 % O2. The noise level at the site boundary was below 60 dB. The vibration at the site boundary was below 45 dB. During the combined heat and power supply demonstration, heat and power were supplied to neighboring public facilities with the MMX combustion technology and 100 % hydrogen fuel. The electric power output reached 1800 kW at which the NOx emissions were 72 ppmv at 15 % O2, and 60 %RH. Combustion instabilities were not observed. The gas turbine efficiency was improved by about 1 % compared to a non-premixed type combustor with water injection as NOx reduction method. During a total equivalent operation time of 1040 hours, all combustor parts, the M1A-17 gas turbine as such, and the co-generation system were without any issues. KW - industrial gas turbine KW - combustor development KW - fuels KW - hydrogen KW - emission Y1 - 2022 SN - 978-0-7918-8599-4 U6 - https://doi.org/10.1115/GT2022-81620 N1 - ASME Turbo Expo 2022: Turbomachinery Technical Conference and Exposition June 13–17, 2022 Rotterdam, Netherlands PB - American Society of Mechanical Engineers CY - Fairfield ER - TY - JOUR A1 - Hein, Andreas M. A1 - Eubanks, T. Marshall A1 - Lingam, Manasvi A1 - Hibberd, Adam A1 - Fries, Dan A1 - Schneider, Jean A1 - Kervella, Pierre A1 - Kennedy, Robert A1 - Perakis, Nikolaos A1 - Dachwald, Bernd T1 - Interstellar now! Missions to explore nearby interstellar objects JF - Advances in Space Research N2 - The recently discovered first hyperbolic objects passing through the Solar System, 1I/’Oumuamua and 2I/Borisov, have raised the question about near term missions to Interstellar Objects. In situ spacecraft exploration of these objects will allow the direct determination of both their structure and their chemical and isotopic composition, enabling an entirely new way of studying small bodies from outside our solar system. In this paper, we map various Interstellar Object classes to mission types, demonstrating that missions to a range of Interstellar Object classes are feasible, using existing or near-term technology. We describe flyby, rendezvous and sample return missions to interstellar objects, showing various ways to explore these bodies characterizing their surface, dynamics, structure and composition. Their direct exploration will constrain their formation and history, situating them within the dynamical and chemical evolution of the Galaxy. These mission types also provide the opportunity to explore solar system bodies and perform measurements in the far outer solar system. KW - Interstellar objects KW - Trajectories KW - Missions Y1 - 2022 U6 - https://doi.org/10.1016/j.asr.2021.06.052 SN - 0273-1177 VL - 69 IS - 1 SP - 402 EP - 414 PB - Elsevier CY - Amsterdam ER - TY - CHAP A1 - Schopen, Oliver A1 - Shabani, Bahman A1 - Esch, Thomas A1 - Kemper, Hans A1 - Shah, Neel ED - Rahim, S.A. ED - As'arry, A. ED - Zuhri, M.Y.M. ED - Harmin, M.Y. ED - Rezali, K.A.M. ED - Hairuddin, A.A. T1 - Quantitative evaluation of health management designs for fuel cell systems in transport vehicles T2 - 2nd UNITED-SAIG International Conference Proceedings N2 - Focusing on transport vehicles, mainly with regard to aviation applications, this paper presents compilation and subsequent quantitative evaluation of methods aimed at building an optimum integrated health management solution for fuel cell systems. The methods are divided into two different main types and compiled in a related scheme. Furthermore, different methods are analysed and evaluated based on parameters specific to the aviation context of this study. Finally, the most suitable method for use in fuel cell health management systems is identified and its performance and suitability is quantified. KW - aviation application KW - health management systems KW - fuel cell systems Y1 - 2022 N1 - 2nd UNITED-SAIG International Conference, 23-24 May 2022, Putrajaya, Malaysia SP - 1 EP - 3 ER - TY - GEN A1 - Feldmann, Marco A1 - Francke, Gero A1 - Espe, Clemes A1 - Chen, Qian A1 - Baader, Fabian A1 - Boxberg, Marc S. A1 - Sustrate, Anna-Marie A1 - Kowalski, Julia A1 - Dachwald, Bernd T1 - Performance data of an ice-melting probe from field tests in two different ice environments N2 - This dataset was acquired at field tests of the steerable ice-melting probe "EnEx-IceMole" (Dachwald et al., 2014). A field test in summer 2014 was used to test the melting probe's system, before the probe was shipped to Antarctica, where, in international cooperation with the MIDGE project, the objective of a sampling mission in the southern hemisphere summer 2014/2015 was to return a clean englacial sample from the subglacial brine reservoir supplying the Blood Falls at Taylor Glacier (Badgeley et al., 2017, German et al., 2021). The standardized log-files generated by the IceMole during melting operation include more than 100 operational parameters, housekeeping information, and error states, which are reported to the base station in intervals of 4 s. Occasional packet loss in data transmission resulted in a sparse number of increased sampling intervals, which where compensated for by linear interpolation during post processing. The presented dataset is based on a subset of this data: The penetration distance is calculated based on the ice screw drive encoder signal, providing the rate of rotation, and the screw's thread pitch. The melting speed is calculated from the same data, assuming the rate of rotation to be constant over one sampling interval. The contact force is calculated from the longitudinal screw force, which es measured by strain gauges. The used heating power is calculated from binary states of all heating elements, which can only be either switched on or off. Temperatures are measured at each heating element and averaged for three zones (melting head, side-wall heaters and back-plate heaters). KW - Ocean Worlds KW - Icy Moons KW - Cryobot KW - Analogue Environments KW - Melting Efficiency KW - Melting Performance KW - Melting Probe KW - Ice Melting Y1 - 2022 U6 - https://doi.org/10.5281/zenodo.6094866 N1 - Forschungsdaten zu "Field-test performance of an ice-melting probe in a terrestrial analogue environment" (https://opus.bibliothek.fh-aachen.de/opus4/frontdoor/index/index/docId/10889) ER - TY - CHAP A1 - Mayntz, Joscha A1 - Keimer, Jona A1 - Dahmann, Peter A1 - Hille, Sebastian A1 - Stumpf, Eike A1 - Fisher, Alex A1 - Dorrington, Graham T1 - Electrical Drive and Regeneration in General Aviation Flight with Propellers T2 - Deutscher Luft- und Raumfahrtkongress 2020 N2 - Electric flight has the potential for a more sustainable and energy-saving way of aviation compared to fossil fuel aviation. The electric motor can be used as a generator inflight to regenerate energy during descent. Three different approaches to regenerating with electric propeller powertrains are proposed in this paper. The powertrain is to be set up in a wind tunnel to determine the propeller efficiency in both working modes as well as the noise emissions. Furthermore, the planned flight tests are discussed. In preparation for these tests, a yaw stability analysis is performed with the result that the aeroplane is controllable during flight and in the most critical failure case. The paper shows the potential for inflight regeneration and addresses the research gaps in the dual role of electric powertrains for propulsion and regeneration of general aviation aircraft. KW - Propeller Aerodynamics KW - Flight Tests KW - Flight Mechanics KW - Electrical Flight KW - Inflight Regeneration, Recuperation Y1 - 2022 U6 - https://doi.org/10.25967/530100 N1 - Deutscher Luft- und Raumfahrtkongress 2020, 1. - 3. September 2020, Online PB - DGLR CY - Bonn ER - TY - JOUR A1 - Funke, Harald A1 - Esch, Thomas A1 - Roosen, Petra T1 - Powertrain Adaptions for LPG Usage in General Aviation JF - MTZ worldwide N2 - In general aviation, too, it is desirable to be able to operate existing internal combustion engines with fuels that produce less CO₂ than Avgas 100LL being widely used today It can be assumed that, in comparison, the fuels CNG, LPG or LNG, which are gaseous under normal conditions, produce significantly lower emissions. Necessary propulsion system adaptations were investigated as part of a research project at Aachen University of Applied Sciences. Y1 - 2022 U6 - https://doi.org/10.1007/s38313-021-0756-6 VL - 2022 IS - 83 SP - 58 EP - 62 PB - Springer Nature CY - Basel ER - TY - GEN A1 - Keimer, Jona A1 - Girbig, Leo A1 - Mayntz, Joscha A1 - Tegtmeyer, Philipp A1 - Wendland, Frederik A1 - Dahman, Peter A1 - Fisher, Alex A1 - Dorrington, Graham T1 - Flight mission optimization for eco-efficiency in consideration of electric regeneration and atmospheric conditions T2 - AIAA AVIATION 2022 Forum N2 - The development and operation of hybrid or purely electrically powered aircraft in regional air mobility is a significant challenge for the entire aviation sector. This technology is expected to lead to substantial advances in flight performance, energy efficiency, reliability, safety, noise reduction, and exhaust emissions. Nevertheless, any consumed energy results in heat or carbon dioxide emissions and limited electric energy storage capabilities suppress commercial use. Therefore, the significant challenges to achieving eco-efficient aviation are increased aircraft efficiency, the development of new energy storage technologies, and the optimization of flight operations. Two major approaches for higher eco-efficiency are identified: The first one, is to take horizontal and vertical atmospheric motion phenomena into account. Where, in particular, atmospheric waves hold exciting potential. The second one is the use of the regeneration ability of electric aircraft. The fusion of both strategies is expected to improve efficiency. The objective is to reduce energy consumption during flight while not neglecting commercial usability and convenient flight characteristics. Therefore, an optimized control problem based on a general aviation class aircraft has to be developed and validated by flight experiments. The formulated approach enables a development of detailed knowledge of the potential and limitations of optimizing flight missions, considering the capability of regeneration and atmospheric influences to increase efficiency and range. Y1 - 2022 U6 - https://doi.org/10.2514/6.2022-4118 N1 - AIAA AVIATION 2022 Forum, June 27-July 1, 2022 Chicago, IL & Virtual PB - AIAA CY - Reston, Va. ER - TY - CHAP A1 - Veettil, Yadu Krishna Morassery A1 - Rakshit, Shantam A1 - Schopen, Oliver A1 - Kemper, Hans A1 - Esch, Thomas A1 - Shabani, Bahman ED - Bin Abdollah, Mohd Fadzli ED - Amiruddin, Hilmi ED - Singh, Amrik Singh Phuman ED - Munir, Fudhail Abdul ED - Ibrahim, Asriana T1 - Automated Control System Strategies to Ensure Safety of PEM Fuel Cells Using Kalman Filters T2 - Proceedings of the 7th International Conference and Exhibition on Sustainable Energy and Advanced Materials (ICE-SEAM 2021), Melaka, Malaysia N2 - Having well-defined control strategies for fuel cells, that can efficiently detect errors and take corrective action is critically important for safety in all applications, and especially so in aviation. The algorithms not only ensure operator safety by monitoring the fuel cell and connected components, but also contribute to extending the health of the fuel cell, its durability and safe operation over its lifetime. While sensors are used to provide peripheral data surrounding the fuel cell, the internal states of the fuel cell cannot be directly measured. To overcome this restriction, Kalman Filter has been implemented as an internal state observer. Other safety conditions are evaluated using real-time data from every connected sensor and corrective actions automatically take place to ensure safety. The algorithms discussed in this paper have been validated thorough Model-in-the-Loop (MiL) tests as well as practical validation at a dedicated test bench. KW - control system KW - PEM fuel cells KW - Kalman filter Y1 - 2022 SN - 978-981-19-3178-9 SN - 978-981-19-3179-6 (E-Book) U6 - https://doi.org/10.1007/978-981-19-3179-6_55 SN - 2195-4356 N1 - 7th International Conference and Exhibition on Sustainable Energy and Advanced Material (ICE-SEAM 2021), Universiti Teknikal Malaysia Melaka (UTeM), Malaysia, in association with the Universitas Sebelas Maret (UNS), Indonesia, 23 November 2021 SP - 296 EP - 299 PB - Springer Nature CY - Singapore ER - TY - CHAP A1 - Tamaldin, Noreffendy A1 - Mansor, Muhd Rizuan A1 - Mat Yamin, Ahmad Kamal A1 - Bin Abdollah, Mohd Fazli A1 - Esch, Thomas A1 - Tonoli, Andrea A1 - Reisinger, Karl Heinz A1 - Sprenger, Hanna A1 - Razuli, Hisham ED - Bin Abdollah, Mohd Fadzli ED - Amiruddin, Hilmi ED - Singh, Amrik Singh Phuman ED - Munir, Fudhail Abdul ED - Ibrahim, Asriana T1 - Development of UTeM United Future Fuel Design Training Center Under Erasmus+ United Program T2 - Proceedings of the 7th International Conference and Exhibition on Sustainable Energy and Advanced Materials (ICE-SEAM 2021), Melaka, Malaysia N2 - The industrial revolution IR4.0 era have driven many states of the art technologies to be introduced especially in the automotive industry. The rapid development of automotive industries in Europe have created wide industry gap between European Union (EU) and developing countries such as in South-East Asia (SEA). Indulging this situation, FH Joanneum, Austria together with European partners from FH Aachen, Germany and Politecnico Di Torino, Italy is taking initiative to close the gap utilizing the Erasmus+ United grant from EU. A consortium was founded to engage with automotive technology transfer using the European ramework to Malaysian, Indonesian and Thailand Higher Education Institutions (HEI) as well as automotive industries. This could be achieved by establishing Engineering Knowledge Transfer Unit (EKTU) in respective SEA institutions guided by the industry partners in their respective countries. This EKTU could offer updated, innovative, and high-quality training courses to increase graduate’s employability in higher education institutions and strengthen relations between HEI and the wider economic and social environment by addressing Universityindustry cooperation which is the regional priority for Asia. It is expected that, the Capacity Building Initiative would improve the quality of higher education and enhancing its relevance for the labor market and society in the SEA partners. The outcome of this project would greatly benefit the partners in strong and complementary partnership targeting the automotive industry and enhanced larger scale international cooperation between the European and SEA partners. It would also prepare the SEA HEI in sustainable partnership with Automotive industry in the region as a mean of income generation in the future. KW - Erasmus+ United KW - technology transfer KW - UTeM Engineering Knowledge Transfer Unit KW - Malaysian automotive industry Y1 - 2022 SN - 978-981-19-3178-9 SN - 978-981-19-3179-6 (E-Book) U6 - https://doi.org/10.1007/978-981-19-3179-6_50 SN - 2195-4356 N1 - 7th International Conference and Exhibition on Sustainable Energy and Advanced Material (ICE-SEAM 2021), Universiti Teknikal Malaysia Melaka (UTeM), Malaysia, in association with the Universitas Sebelas Maret (UNS), Indonesia, 23 November 2021 SP - 274 EP - 278 PB - Springer Nature CY - Singapore ER - TY - JOUR A1 - Bergmann, Ole A1 - Möhren, Felix A1 - Braun, Carsten A1 - Janser, Frank T1 - On the influence of elasticity on swept propeller noise JF - AIAA SCITECH 2023 Forum N2 - High aerodynamic efficiency requires propellers with high aspect ratios, while propeller sweep potentially reduces noise. Propeller sweep and high aspect ratios increase elasticity and coupling of structural mechanics and aerodynamics, affecting the propeller performance and noise. Therefore, this paper analyzes the influence of elasticity on forward-swept, backward-swept, and unswept propellers in hover conditions. A reduced-order blade element momentum approach is coupled with a one-dimensional Timoshenko beam theory and Farassat's formulation 1A. The results of the aeroelastic simulation are used as input for the aeroacoustic calculation. The analysis shows that elasticity influences noise radiation because thickness and loading noise respond differently to deformations. In the case of the backward-swept propeller, the location of the maximum sound pressure level shifts forward by 0.5 °, while in the case of the forward-swept propeller, it shifts backward by 0.5 °. Therefore, aeroacoustic optimization requires the consideration of propeller deformation. Y1 - 2023 U6 - https://doi.org/10.2514/6.2023-0210 N1 - Session: Propeller, Open Rotor, and Rotorcraft Noise II AIAA SCITECH 2023 Forum, 23-27 January 2023, National Harbor, MD & Online PB - AIAA CY - Reston, Va. ER - TY - JOUR A1 - Thoma, Andreas A1 - Thomessen, Karolin A1 - Gardi, Alessandro A1 - Fisher, A. A1 - Braun, Carsten T1 - Prioritising paths: An improved cost function for local path planning for UAV in medical applications JF - The Aeronautical Journal N2 - Even the shortest flight through unknown, cluttered environments requires reliable local path planning algorithms to avoid unforeseen obstacles. The algorithm must evaluate alternative flight paths and identify the best path if an obstacle blocks its way. Commonly, weighted sums are used here. This work shows that weighted Chebyshev distances and factorial achievement scalarising functions are suitable alternatives to weighted sums if combined with the 3DVFH* local path planning algorithm. Both methods considerably reduce the failure probability of simulated flights in various environments. The standard 3DVFH* uses a weighted sum and has a failure probability of 50% in the test environments. A factorial achievement scalarising function, which minimises the worst combination of two out of four objective functions, reaches a failure probability of 26%; A weighted Chebyshev distance, which optimises the worst objective, has a failure probability of 30%. These results show promise for further enhancements and to support broader applicability. KW - Path planning KW - Cost function KW - Multi-objective optimization Y1 - 2023 U6 - https://doi.org/10.1017/aer.2023.68 SN - 0001-9240 (Print) SN - 2059-6464 (Online) IS - First View SP - 1 EP - 18 PB - Cambridge University Press CY - Cambridge ER - TY - GEN A1 - Hille, Sebastian A1 - Stumpf, Eike A1 - Mayntz, Joscha A1 - Dahmann, Peter T1 - Prediction of sound exposure caused by a landing motor glider with recuperating propellers T2 - AIAA SCITECH 2023 Forum N2 - This paper presents an approach to predicting the sound exposure on the ground caused by a landing aircraft with recuperating propellers. The noise source along the trajectory of a flight specified for a steeper approach is simulated based on measurements of sound power levels and additional parameters of a single propeller placed in a wind tunnel. To validate the measured data/measurement results, these simulations are also supported by overflight measurements of a test aircraft. It is shown that the simple source models of propellers do not provide fully satisfactory results since the sound levels are estimated too low. Nevertheless, with a further reference comparison, margins for an acceptable increase in the sound power level of the aircraft on its now steeper approach path could be estimated. Thus, in this case, a +7 dB increase in SWL would not increase the SEL compared to the conventional approach within only 2 km ahead of the airfield. Y1 - 2023 U6 - https://doi.org/10.2514/6.2023-0211 N1 - AIAA SCITECH 2023 Forum, 23-27 January 2023, National Harbor, Md & Online PB - AIAA CY - Reston, Va. ER - TY - JOUR A1 - Schulze, Sven A1 - Feyerl, Günter A1 - Pischinger, Stefan T1 - Advanced ECMS for hybrid electric heavy-duty trucks with predictive battery discharge and adaptive operating strategy under real driving conditions JF - Energies N2 - To fulfil the CO2 emission reduction targets of the European Union (EU), heavy-duty (HD) trucks need to operate 15% more efficiently by 2025 and 30% by 2030. Their electrification is necessary as conventional HD trucks are already optimized for the long-haul application. The resulting hybrid electric vehicle (HEV) truck gains most of the fuel saving potential by the recuperation of potential energy and its consecutive utilization. The key to utilizing the full potential of HEV-HD trucks is to maximize the amount of recuperated energy and ensure its intelligent usage while keeping the operating point of the internal combustion engine as efficient as possible. To achieve this goal, an intelligent energy management strategy (EMS) based on ECMS is developed for a parallel HEV-HD truck which uses predictive discharge of the battery and adaptive operating strategy regarding the height profile and the vehicle mass. The presented EMS can reproduce the global optimal operating strategy over long phases and lead to a fuel saving potential of up to 2% compared with a heuristic strategy. Furthermore, the fuel saving potential is correlated with the investigated boundary conditions to deepen the understanding of the impact of intelligent EMS for HEV-HD trucks. KW - Energy management strategies KW - ECMS KW - CO2 emission reduction targets KW - Driving cycle recognition KW - Predictive battery discharge Y1 - 2023 U6 - https://doi.org/10.3390/en16135171 SN - 1996-1073 N1 - The article belongs to the Special Issue "Energy Management Strategies of Electrified Vehicles toward the Real-World Driving". VL - 16 IS - 13 PB - MDPI CY - Basel ER - TY - CHAP A1 - Thoma, Andreas A1 - Stiemer, Luc A1 - Braun, Carsten A1 - Fisher, Alex A1 - Gardi, Alessandro G. T1 - Potential of hybrid neural network local path planner for small UAV in urban environments T2 - AIAA SCITECH 2023 Forum N2 - This work proposes a hybrid algorithm combining an Artificial Neural Network (ANN) with a conventional local path planner to navigate UAVs efficiently in various unknown urban environments. The proposed method of a Hybrid Artificial Neural Network Avoidance System is called HANNAS. The ANN analyses a video stream and classifies the current environment. This information about the current Environment is used to set several control parameters of a conventional local path planner, the 3DVFH*. The local path planner then plans the path toward a specific goal point based on distance data from a depth camera. We trained and tested a state-of-the-art image segmentation algorithm, PP-LiteSeg. The proposed HANNAS method reaches a failure probability of 17%, which is less than half the failure probability of the baseline and around half the failure probability of an improved, bio-inspired version of the 3DVFH*. The proposed HANNAS method does not show any disadvantages regarding flight time or flight distance. Y1 - 2023 U6 - https://doi.org/10.2514/6.2023-2359 N1 - AIAA SCITECH 2023 Forum, 23-27 January 2023, National Harbor, Md & Online PB - AIAA CY - Reston, Va. ER - TY - JOUR A1 - Ulmer, Jessica A1 - Braun, Sebastian A1 - Cheng, Chi-Tsun A1 - Dowey, Steve A1 - Wollert, Jörg T1 - A human factors-aware assistance system in manufacturing based on gamification and hardware modularisation JF - International Journal of Production Research N2 - Assistance systems have been widely adopted in the manufacturing sector to facilitate various processes and tasks in production environments. However, existing systems are mostly equipped with rigid functional logic and do not provide individual user experiences or adapt to their capabilities. This work integrates human factors in assistance systems by adjusting the hardware and instruction presented to the workers’ cognitive and physical demands. A modular system architecture is designed accordingly, which allows a flexible component exchange according to the user and the work task. Gamification, the use of game elements in non-gaming contexts, has been further adopted in this work to provide level-based instructions and personalised feedback. The developed framework is validated by applying it to a manual workstation for industrial assembly routines. KW - Human factors KW - assistance system KW - gamification KW - adaptive systems KW - manufacturing Y1 - 2023 U6 - https://doi.org/10.1080/00207543.2023.2166140 SN - 0020-7543 (Print) SN - 1366-588X (Online) PB - Taylor & Francis ER - TY - CHAP A1 - Stark, Ralf A1 - Rieping, Carla A1 - Esch, Thomas T1 - The impact of guide tubes on flow separation in rocket nozzles T2 - Aerospace Europe Conference 2023 - 10th EUCASS - 9th CEAS N2 - Rocket engine test facilities and launch pads are typically equipped with a guide tube. Its purpose is to ensure the controlled and safe routing of the hot exhaust gases. In addition, the guide tube induces a suction that effects the nozzle flow, namely the flow separation during transient start-up and shut-down of the engine. A cold flow subscale nozzle in combination with a set of guide tubes was studied experimentally to determine the main influencing parameters. KW - Guide Tube KW - TICTOP KW - Nozzle KW - Suction Y1 - 2023 N1 - Lausanne, July 9-13, 2023 ER - TY - CHAP A1 - Möhren, Felix A1 - Bergmann, Ole A1 - Janser, Frank A1 - Braun, Carsten T1 - On the determination of harmonic propeller loads T2 - AIAA SCITECH 2023 Forum N2 - Dynamic loads significantly impact the structural design of propeller blades due to fatigue and static strength. Since propellers are elastic structures, deformations and aerodynamic loads are coupled. In the past, propeller manufacturers established procedures to determine unsteady aerodynamic loads and the structural response with analytical steady-state calculations. According to the approach, aeroelastic coupling primarily consists of torsional deformations. They neglect bending deformations, deformation velocities, and inertia terms. This paper validates the assumptions above for a General Aviation propeller and a lift propeller for urban air mobility or large cargo drones. Fully coupled reduced-order simulations determine the dynamic loads in the time domain. A quasi-steady blade element momentum approach transfers loads to one-dimensional finite beam elements. The simulation results are in relatively good agreement with the analytical method for the General Aviation propeller but show increasing errors for the slender lift propeller. The analytical approach is modified to consider the induced velocities. Still, inertia and velocity proportional terms play a significant role for the lift propeller due to increased elasticity. The assumption that only torsional deformations significantly impact the dynamic loads of propellers is not valid. Adequate determination of dynamic loads of such designs requires coupled aeroelastic simulations or advanced analytical procedures. Y1 - 2023 U6 - https://doi.org/10.2514/6.2023-2404 N1 - AIAA SCITECH 2023 Forum, 23-27 January 2023, National Harbor, Md & Online PB - AIAA ER - TY - CHAP A1 - Dachwald, Bernd A1 - Ulamec, Stephan A1 - Kowalski, Julia A1 - Boxberg, Marc S. A1 - Baader, Fabian A1 - Biele, Jens A1 - Kömle, Norbert ED - Badescu, Viorel ED - Zacny, Kris ED - Bar-Cohen, Yoseph T1 - Ice melting probes T2 - Handbook of Space Resources N2 - The exploration of icy environments in the solar system, such as the poles of Mars and the icy moons (a.k.a. ocean worlds), is a key aspect for understanding their astrobiological potential as well as for extraterrestrial resource inspection. On these worlds, ice melting probes are considered to be well suited for the robotic clean execution of such missions. In this chapter, we describe ice melting probes and their applications, the physics of ice melting and how the melting behavior can be modeled and simulated numerically, the challenges for ice melting, and the required key technologies to deal with those challenges. We also give an overview of existing ice melting probes and report some results and lessons learned from laboratory and field tests. KW - Ice melting probe KW - Ice penetration KW - Icy moons KW - Ocean worlds KW - Mars Y1 - 2023 SN - 978-3-030-97912-6 (Print) SN - 978-3-030-97913-3 (Online) U6 - https://doi.org/10.1007/978-3-030-97913-3_29 SP - 955 EP - 996 PB - Springer CY - Cham ER - TY - JOUR A1 - Fayyazi, Mojgan A1 - Sardar, Paramjotsingh A1 - Thomas, Sumit Infent A1 - Daghigh, Roonak A1 - Jamali, Ali A1 - Esch, Thomas A1 - Kemper, Hans A1 - Langari, Reza A1 - Khayyam, Hamid T1 - Artificial intelligence/machine learning in energy management systems, control, and optimization of hydrogen fuel cell vehicles N2 - Environmental emissions, global warming, and energy-related concerns have accelerated the advancements in conventional vehicles that primarily use internal combustion engines. Among the existing technologies, hydrogen fuel cell electric vehicles and fuel cell hybrid electric vehicles may have minimal contributions to greenhouse gas emissions and thus are the prime choices for environmental concerns. However, energy management in fuel cell electric vehicles and fuel cell hybrid electric vehicles is a major challenge. Appropriate control strategies should be used for effective energy management in these vehicles. On the other hand, there has been significant progress in artificial intelligence, machine learning, and designing data-driven intelligent controllers. These techniques have found much attention within the community, and state-of-the-art energy management technologies have been developed based on them. This manuscript reviews the application of machine learning and intelligent controllers for prediction, control, energy management, and vehicle to everything (V2X) in hydrogen fuel cell vehicles. The effectiveness of data-driven control and optimization systems are investigated to evolve, classify, and compare, and future trends and directions for sustainability are discussed. KW - optimization system KW - intelligent control KW - fuel cell vehicle KW - machine learning KW - artificial intelligence KW - intelligent energy management Y1 - 2023 U6 - https://doi.org/10.3390/su15065249 N1 - This article belongs to the Special Issue "Circular Economy and Artificial Intelligence" VL - 15 IS - 6 SP - 38 PB - MDPI CY - Basel ER -