TY - JOUR A1 - Poghossian, Arshak A1 - Schöning, Michael Josef T1 - Recent progress in silicon-based biologically sensitive field-effect devices JF - Current Opinion in Electrochemistry N2 - Biologically sensitive field-effect devices (BioFEDs) advantageously combine the electronic field-effect functionality with the (bio)chemical receptor’s recognition ability for (bio)chemical sensing. In this review, basic and widely applied device concepts of silicon-based BioFEDs (ion-sensitive field-effect transistor, silicon nanowire transistor, electrolyte-insulator-semiconductor capacitor, light-addressable potentiometric sensor) are presented and recent progress (from 2019 to early 2021) is discussed. One of the main advantages of BioFEDs is the label-free sensing principle enabling to detect a large variety of biomolecules and bioparticles by their intrinsic charge. The review encompasses applications of BioFEDs for the label-free electrical detection of clinically relevant protein biomarkers, deoxyribonucleic acid molecules and viruses, enzyme-substrate reactions as well as recording of the cell acidification rate (as an indicator of cellular metabolism) and the extracellular potential. Y1 - 2021 U6 - http://dx.doi.org/10.1016/j.coelec.2021.100811 SN - 2451-9103 IS - Article number: 100811 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Poghossian, Arshak A1 - Weil, M. A1 - Cherstvy, A. G. A1 - Schöning, Michael Josef T1 - Electrical monitoring of polyelectrolyte multilayer formation by means of capacitive field-effect devices JF - Analytical and bioanalytical chemistry N2 - The semiconductor field-effect platform represents a powerful tool for detecting the adsorption and binding of charged macromolecules with direct electrical readout. In this work, a capacitive electrolyte–insulator–semiconductor (EIS) field-effect sensor consisting of an Al-p-Si-SiO2 structure has been applied for real-time in situ electrical monitoring of the layer-by-layer formation of polyelectrolyte (PE) multilayers (PEM). The PEMs were deposited directly onto the SiO2 surface without any precursor layer or drying procedures. Anionic poly(sodium 4-styrene sulfonate) and cationic weak polyelectrolyte poly(allylamine hydrochloride) have been chosen as a model system. The effect of the ionic strength of the solution, polyelectrolyte concentration, number and polarity of the PE layers on the characteristics of the PEM-modified EIS sensors have been studied by means of capacitance–voltage and constant-capacitance methods. In addition, the thickness, surface morphology, roughness and wettabilityof the PE mono- and multilayers have been characterised by ellipsometry, atomic force microscopy and water contact-angle methods, respectively. To explain potential oscillations on the gate surface and signal behaviour of the capacitive field-effect EIS sensor modified with a PEM, a simplified electrostatic model that takes into account the reduced electrostatic screening of PE charges by mobile ions within the PEM has been proposed and discussed. Y1 - 2013 U6 - http://dx.doi.org/10.1007/s00216-013-6951-9 SN - 1432-1130 ; 1618-2642 VL - 405 IS - 20 SP - 6425 EP - 6436 PB - Springer CY - Berlin ER - TY - JOUR A1 - Huck, Christina A1 - Schiffels, Johannes A1 - Herrera, Cony N. A1 - Schelden, Maximilian A1 - Selmer, Thorsten A1 - Poghossian, Arshak A1 - Baumann, Marcus A1 - Wagner, Patrick A1 - Schöning, Michael Josef T1 - Metabolic responses of Escherichia coli upon glucose pulses captured by a capacitive field-effect sensor JF - Physica Status Solidi (A) N2 - Living cells are complex biological systems transforming metabolites taken up from the surrounding medium. Monitoring the responses of such cells to certain substrate concentrations is a challenging task and offers possibilities to gain insight into the vitality of a community influenced by the growth environment. Cell-based sensors represent a promising platform for monitoring the metabolic activity and thus, the “welfare” of relevant organisms. In the present study, metabolic responses of the model bacterium Escherichia coli in suspension, layered onto a capacitive field-effect structure, were examined to pulses of glucose in the concentration range between 0.05 and 2 mM. It was found that acidification of the surrounding medium takes place immediately after glucose addition and follows Michaelis–Menten kinetic behavior as a function of the glucose concentration. In future, the presented setup can, therefore, be used to study substrate specificities on the enzymatic level and may as well be used to perform investigations of more complex metabolic responses. Conclusions and perspectives highlighting this system are discussed. Y1 - 2013 U6 - http://dx.doi.org/10.1002/pssa.201200900 SN - 0031-8965 VL - 210 IS - 5 SP - 926 EP - 931 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Bäcker, Matthias A1 - Rakowski, D. A1 - Poghossian, Arshak A1 - Biselli, Manfred A1 - Wagner, Patrick A1 - Schöning, Michael Josef T1 - Chip-based amperometric enzyme sensor system for monitoring of bioprocesses by flow-injection analysis JF - Journal of Biotechnology N2 - A microfluidic chip integrating amperometric enzyme sensors for the detection of glucose, glutamate and glutamine in cell-culture fermentation processes has been developed. The enzymes glucose oxidase, glutamate oxidase and glutaminase were immobilized by means of cross-linking with glutaraldehyde on platinum thin-film electrodes integrated within a microfluidic channel. The biosensor chip was coupled to a flow-injection analysis system for electrochemical characterization of the sensors. The sensors have been characterized in terms of sensitivity, linear working range and detection limit. The sensitivity evaluated from the respective peak areas was 1.47, 3.68 and 0.28 μAs/mM for the glucose, glutamate and glutamine sensor, respectively. The calibration curves were linear up to a concentration of 20 mM glucose and glutamine and up to 10 mM for glutamate. The lower detection limit amounted to be 0.05 mM for the glucose and glutamate sensor, respectively, and 0.1 mM for the glutamine sensor. Experiments in cell-culture medium have demonstrated a good correlation between the glutamate, glutamine and glucose concentrations measured with the chip-based biosensors in a differential-mode and the commercially available instrumentation. The obtained results demonstrate the feasibility of the realized microfluidic biosensor chip for monitoring of bioprocesses. Y1 - 2013 U6 - http://dx.doi.org/10.1016/j.jbiotec.2012.03.014 SN - 0168-1656 VL - 163 IS - 4 SP - 371 EP - 376 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Kirchner, Patrick A1 - Oberländer, Jan A1 - Suco, Henri-Pierre A1 - Rysstad, Gunnar A1 - Schöning, Michael Josef T1 - Monitoring the microbicidal effectiveness of gaseous hydrogen peroxide in sterilisation processes by means of a calorimetric gas sensor JF - Food control N2 - In the present work, a novel method for monitoring sterilisation processes with gaseous H2O2 in combination with heat activation by means of a specially designed calorimetric gas sensor was evaluated. Therefore, the sterilisation process was extensively studied by using test specimens inoculated with Bacillus atrophaeus spores in order to identify the most influencing process factors on its microbicidal effectiveness. Besides the contact time of the test specimens with gaseous H2O2 varied between 0.2 and 0.5 s, the present H2O2 concentration in a range from 0 to 8% v/v (volume percent) had a strong influence on the microbicidal effectiveness, whereas the change of the vaporiser temperature, gas flow and humidity were almost negligible. Furthermore, a calorimetric H2O2 gas sensor was characterised in the sterilisation process with gaseous H2O2 in a wide range of parameter settings, wherein the measurement signal has shown a linear response against the H2O2 concentration with a sensitivity of 4.75 °C/(% v/v). In a final step, a correlation model by matching the measurement signal of the gas sensor with the microbial inactivation kinetics was established that demonstrates its suitability as an efficient method for validating the microbicidal effectiveness of sterilisation processes with gaseous H2O2. KW - hydrogen peroxide KW - sterilisation KW - Bacillus atrophaeus KW - calorimetric gas sensor Y1 - 2012 U6 - http://dx.doi.org/10.1016/j.foodcont.2012.11.048 SN - 0956-7135 VL - 31 IS - 2 SP - 530 EP - 538 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Kirchner, Patrick A1 - Oberländer, Jan A1 - Suso, Henri-Pierre A1 - Rysstad, Gunnar A1 - Keusgen, Michael A1 - Schöning, Michael Josef T1 - Towards a wireless sensor system for real-time H2O2 monitoring in aseptic food processes JF - Physica status solidi (a) N2 - A wireless sensor system based on the industrial ZigBee standard for low-rate wireless networking was developed that enables real-time monitoring of gaseous H2O2 during the package sterilization in aseptic food processes. The sensor system consists of a remote unit connected to a calorimetric gas sensor, which was already established in former works, and an external base unit connected to a laptop computer. The remote unit was built up by an XBee radio frequency (RF) module for data communication and a programmable system-on-chip controller to read out the sensor signal and process the sensor data, whereas the base unit is a second XBee RF module. For the rapid H2O2 detection on various locations inside the package that has to be sterilized, a novel read-out strategy of the calorimetric gas sensor was established, wherein the sensor response is measured within the short sterilization time and correlated with the present H2O2 concentration. In an exemplary measurement application in an aseptic filling machinery, the suitability of the new, wireless sensor system was demonstrated, wherein the influence of the gas velocity on the H2O2 distribution inside a package was determined and verified with microbiological tests. KW - calorimetric gas sensor;hydrogen peroxide;wireless sensor system Y1 - 2013 U6 - http://dx.doi.org/10.1002/pssa.201200920 SN - 1862-6319 VL - 210 IS - 5 SP - 877 EP - 883 PB - Wiley CY - Weinheim ER - TY - JOUR A1 - Hennemann, Jörg A1 - Kohl, Claus-Dieter A1 - Reisert, Steffen A1 - Kirchner, Patrick A1 - Schöning, Michael Josef T1 - Copper oxide nanofibres for detection of hydrogen peroxide vapour at high concentrations JF - physica status solidi (a) N2 - We present a sensor concept based on copper(II)oxide (CuO) nanofibres for the detection of hydrogen peroxide (H2O2) vapour in the percent per volume (% v/v) range. The fibres were produced by using the electrospinning technique. To avoid water condensation in the pores, the fibres were initially modified by an exposure to H2S to get an enclosed surface. By a thermal treatment at 350 °C the fibres were oxidised back to CuO. Thereby, the visible pores disappear which was verified by SEM analysis. The fibres show a decrease of resistance with increasing H2O2 concentration which is due to the fact that hydrogen peroxide is an oxidising gas and CuO a p-type semiconductor. The sensor shows a change of resistance within the minute range to the exposure until the maximum concentration of 6.9% v/v H2O2. At operating temperatures below 450 °C the corresponding sensor response to a concentration of 4.1% v/v increases. The sensor shows a good reproducibility of the signal at different measurements. CuO seems to be a suitable candidate for the detection of H2O2 vapour at high concentrations. Resistance behaviour of the sensor under exposure to H2O2 vapours between 2.3 and 6.9% v/v at an operating temperature of 450 °C. Y1 - 2013 U6 - http://dx.doi.org/10.1002/pssa.201200775 SN - 1862-6319 VL - 210 IS - 5 SP - 859 EP - 863 PB - Wiley CY - Weinheim ER - TY - JOUR A1 - Schusser, Sebastian A1 - Leinhos, Marcel A1 - Bäcker, Matthias A1 - Poghossian, Arshak A1 - Wagner, Patrick A1 - Schöning, Michael Josef T1 - Impedance spectroscopy: A tool for real-time in situ monitoring of the degradation of biopolymers JF - Physica Status Solidi (A) N2 - Investigation of the degradation kinetics of biodegradable polymers is essential for the development of implantable biomedical devices with predicted biodegradability. In this work, an impedimetric sensor has been applied for real-time and in situ monitoring of degradation processes of biopolymers. The sensor consists of two platinum thin-film electrodes covered by a polymer film to be studied. The benchmark biomedical polymer poly(D,L-lactic acid) (PDLLA) was used as a model system. PDLLA films were deposited on the sensor structure from a polymer solution by using the spin-coating method. The degradation kinetics of PDLLA films have been studied in alkaline solutions of pH 9 and 12 by means of an impedance spectroscopy (IS) method. Any changes in a polymer capacitance/resistance induced by water uptake and/or polymer degradation will modulate the global impedance of the polymer-covered sensor that can be used as an indicator of the polymer degradation. The degradation rate can be evaluated from the time-dependent impedance spectra. As expected, a faster degradation has been observed for PDLLA films exposed to pH 12 solution. Y1 - 2013 U6 - http://dx.doi.org/10.1002/pssa.201200941 SN - 1521-396X ; 0031-8965 VL - 210 IS - 5 SP - 905 EP - 910 PB - Wiley CY - Weinheim ER - TY - JOUR A1 - Itabashi, Akinori A1 - Kosaka, Naoki A1 - Miyamoto, Ko-ichiro A1 - Wagner, Torsten A1 - Schöning, Michael Josef T1 - High-speed chemical imaging system based on front-side-illuminated LAPS JF - Sensors and actuators B: Chemical N2 - The chemical imaging sensor is a semiconductor-based chemical sensor that can visualize the spatial distribution of specific ions on the sensing surface. The conventional chemical imaging system based on the light-addressable potentiometric sensor (LAPS), however, required a long time to obtain a chemical image, due to the slow mechanical scan of a single light beam. For high-speed imaging, a plurality of light beams modulated at different frequencies can be employed to measure the ion concentrations simultaneously at different locations on the sensor plate by frequency division multiplex (FDM). However, the conventional measurement geometry of back-side illumination limited the bandwidth of the modulation frequency required for FDM measurement, because of the low-pass filtering characteristics of carrier diffusion in the Si substrate. In this study, a high-speed chemical imaging system based on front-side-illuminated LAPS was developed, which achieved high-speed spatiotemporal recording of pH change at a rate of 70 frames per second. Y1 - 2013 U6 - http://dx.doi.org/10.1016/j.snb.2013.03.016 SN - 1873-3077 VL - 182 SP - 315 EP - 321 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Werner, Frederik A1 - Wagner, Torsten A1 - Yoshinobu, Tatsuo A1 - Keusgen, Michael A1 - Schöning, Michael Josef T1 - Frequency behaviour of light-addressable potentiometric sensors JF - Physica Status Solidi (A) N2 - Light-addressable potentiometric sensors (LAPS) are semiconductor-based potentiometric sensors, with the advantage to detect the concentration of a chemical species in a liquid solution above the sensor surface in a spatially resolved manner. The addressing is achieved by a modulated and focused light source illuminating the semiconductor and generating a concentration-depending photocurrent. This work introduces a LAPS set-up that is able to monitor the electrical impedance in addition to the photocurrent. The impedance spectra of a LAPS structure, with and without illumination, as well as the frequency behaviour of the LAPS measurement are investigated. The measurements are supported by electrical equivalent circuits to explain the impedance and the LAPS-frequency behaviour. The work investigates the influence of different parameters on the frequency behaviour of the LAPS. Furthermore, the phase shift of the photocurrent, the influence of the surface potential as well as the changes of the sensor impedance will be discussed. Y1 - 2013 U6 - http://dx.doi.org/10.1002/pssa.201200929 SN - 1521-396X ; 0031-8965 VL - 210 IS - 5 SP - 884 EP - 891 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Miyamoto, Ko-ichiro A1 - Ichimura, Hiroki A1 - Wagner, Torsten A1 - Schöning, Michael Josef A1 - Yoshinobu, Tatsuo T1 - Chemical imaging of the concentration profile of ion diffusion in a microfluidic channel JF - Sensors and actuators. B: Chemical N2 - The chemical imaging sensor is a device to visualize the spatial distribution of chemical species based on the principle of LAPS (light-addressable potentiometric sensor), which is a field-effect chemical sensor based on semiconductor. In this study, the chemical imaging sensor has been applied to investigate the ion profile of laminar flows in a microfluidic channel. The chemical images (pH maps) were collected in a Y-shaped microfluidic channel while injecting HCl and NaCl solutions into two branches. From the chemical images, it was clearly observed that the injected solutions formed laminar flows in the channel. In addition, ion diffusion across the laminar flows was observed, and the diffusion coefficient could be derived by fitting the pH profiles to the Fick's equation. Y1 - 2013 U6 - http://dx.doi.org/10.1016/j.snb.2013.04.057 SN - 1873-3077 (E-Journal); 0925-4005 (Print) N1 - Part of special issue "Selected Papers from the 26th European Conference on Solid-State Transducers" VL - 189 SP - 240 EP - 245 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Yoshinobu, Tatsuo A1 - Miyamoto, Ko-ichiro A1 - Wagner, Torsten A1 - Schöning, Michael Josef T1 - Field-effect sensors combined with the scanned light pulse technique: from artificial olfactory images to chemical imaging technologies JF - Chemosensors N2 - The artificial olfactory image was proposed by Lundström et al. in 1991 as a new strategy for an electronic nose system which generated a two-dimensional mapping to be interpreted as a fingerprint of the detected gas species. The potential distribution generated by the catalytic metals integrated into a semiconductor field-effect structure was read as a photocurrent signal generated by scanning light pulses. The impact of the proposed technology spread beyond gas sensing, inspiring the development of various imaging modalities based on the light addressing of field-effect structures to obtain spatial maps of pH distribution, ions, molecules, and impedance, and these modalities have been applied in both biological and non-biological systems. These light-addressing technologies have been further developed to realize the position control of a faradaic current on the electrode surface for localized electrochemical reactions and amperometric measurements, as well as the actuation of liquids in microfluidic devices. KW - visualization KW - light-addressing technologies KW - scanned light pulse technique KW - field-effect structure KW - MOS KW - metal-oxide-semiconductor structure KW - catalytic metal KW - electronic nose KW - gas sensor KW - artificial olfactory image Y1 - 2024 U6 - http://dx.doi.org/10.3390/chemosensors12020020 SN - 2227-9040 N1 - This article belongs to the Special Issue "An Exciting Journey of Chemical Sensors and Biosensors: A Theme Issue in Honor of Professor Ingemar Lundström" Corresponding author: Tatsuo Yoshinobu, Michael J. Schöning VL - 12 IS - 2 PB - MDPI CY - Basel ER - TY - JOUR A1 - Dantism, Shahriar A1 - Röhlen, Desiree A1 - Selmer, Thorsten A1 - Wagner, Torsten A1 - Wagner, Patrick A1 - Schöning, Michael Josef T1 - Quantitative differential monitoring of the metabolic activity of Corynebacterium glutamicum cultures utilizing a light-addressable potentiometric sensor system JF - Biosensors and Bioelectronics Y1 - 2019 U6 - http://dx.doi.org/10.1016/j.bios.2019.111332 VL - 139 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Iken, Heiko A1 - Bronder, Thomas A1 - Goretzki, Alexander A1 - Kriesel, Jana A1 - Ahlborn, Kristina A1 - Gerlach, Frank A1 - Vonau, Winfried A1 - Zander, Willi A1 - Schubert, Jürgen A1 - Schöning, Michael Josef T1 - Development of a Combined pH- and Redox-Sensitive Bi-Electrode Glass Thin-Film Sensor JF - physica status solidi a : applications and materials sciences Y1 - 2019 U6 - http://dx.doi.org/10.1002/pssa.201900114 SN - 1862-6319 VL - 216 IS - 12 SP - 1 EP - 8 PB - Wiley CY - Weinheim ER - TY - JOUR A1 - Dantism, Shahriar A1 - Röhlen, Desiree A1 - Dahmen, Markus A1 - Wagner, Torsten A1 - Wagner, Patrick A1 - Schöning, Michael Josef T1 - LAPS-based monitoring of metabolic responses of bacterial cultures in a paper fermentation broth JF - Sensors and Actuators B: Chemical N2 - As an alternative renewable energy source, methane production in biogas plants is gaining more and more attention. Biomass in a bioreactor contains different types of microorganisms, which should be considered in terms of process-stability control. Metabolically inactive microorganisms within the fermentation process can lead to undesirable, time-consuming and cost-intensive interventions. Hence, monitoring of the cellular metabolism of bacterial populations in a fermentation broth is crucial to improve the biogas production, operation efficiency, and sustainability. In this work, the extracellular acidification of bacteria in a paper-fermentation broth is monitored after glucose uptake, utilizing a differential light-addressable potentiometric sensor (LAPS) system. The LAPS system is loaded with three different model microorganisms (Escherichia coli, Corynebacterium glutamicum, and Lactobacillus brevis) and the effect of the fermentation broth at different process stages on the metabolism of these bacteria is studied. In this way, different signal patterns related to the metabolic response of microorganisms can be identified. By means of calibration curves after glucose uptake, the overall extracellular acidification of bacterial populations within the fermentation process can be evaluated. Y1 - 2020 U6 - http://dx.doi.org/10.1016/j.snb.2020.128232 SN - 0925-4005 VL - 320 IS - Art. 128232 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Pilas, Johanna A1 - Selmer, Thorsten A1 - Keusgen, Michael A1 - Schöning, Michael Josef T1 - Screen-printed carbon electrodes modified with graphene oxide for the design of a reagent-free NAD+-dependent biosensor array JF - Analytical Chemistry Y1 - 2019 U6 - http://dx.doi.org/10.1021/acs.analchem.9b04481 VL - 91 IS - 23 SP - 15293 EP - 15299 PB - ACS Publications CY - Washington ER - TY - JOUR A1 - Jildeh, Zaid B. A1 - Kirchner, Patrick A1 - Oberländer, Jan A1 - Vahidpour, Farnoosh A1 - Wagner, Patrick H. A1 - Schöning, Michael Josef T1 - Development of a package-sterilization process for aseptic filling machines: A numerical approach and validation for surface treatment with hydrogen peroxide JF - Sensor and Actuators A: Physical N2 - Within the present work a sterilization process by a heated gas mixture that contains hydrogen peroxide (H₂O₂) is validated by experiments and numerical modeling techniques. The operational parameters that affect the sterilization efficacy are described alongside the two modes of sterilization: gaseous and condensed H₂O₂. Measurements with a previously developed H₂O₂ gas sensor are carried out to validate the applied H₂O₂ gas concentration during sterilization. We performed microbiological tests at different H₂O₂ gas concentrations by applying an end-point method to carrier strips, which contain different inoculation loads of Geobacillus stearothermophilus spores. The analysis of the sterilization process of a pharmaceutical glass vial is performed by numerical modeling. The numerical model combines heat- and advection-diffusion mass transfer with vapor–pressure equations to predict the location of condensate formation and the concentration of H₂O₂ at the packaging surfaces by changing the gas temperature. For a sterilization process of 0.7 s, a H₂O₂ gas concentration above 4% v/v is required to reach a log-count reduction above six. The numerical results showed the location of H₂O₂ condensate formation, which decreases with increasing sterilant-gas temperature. The model can be transferred to different gas nozzle- and packaging geometries to assure the absence of H₂O₂ residues. Y1 - 2020 U6 - http://dx.doi.org/10.1016/j.sna.2019.111691 SN - 0924-4247 VL - 303 IS - 111691 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Muschallik, Lukas A1 - Molinnus, Denise A1 - Jablonski, Melanie A1 - Kipp, Carina Ronja A1 - Bongaerts, Johannes A1 - Pohl, Martina A1 - Wagner, Torsten A1 - Schöning, Michael Josef A1 - Selmer, Thorsten A1 - Siegert, Petra T1 - Synthesis of α-hydroxy ketones and vicinal (R, R)-diols by Bacillus clausii DSM 8716ᵀ butanediol dehydrogenase JF - RSC Advances N2 - α-hydroxy ketones (HK) and 1,2-diols are important building blocks for fine chemical synthesis. Here, we describe the R-selective 2,3-butanediol dehydrogenase from B. clausii DSM 8716ᵀ (BcBDH) that belongs to the metal-dependent medium chain dehydrogenases/reductases family (MDR) and catalyzes the selective asymmetric reduction of prochiral 1,2-diketones to the corresponding HK and, in some cases, the reduction of the same to the corresponding 1,2-diols. Aliphatic diketones, like 2,3-pentanedione, 2,3-hexanedione, 5-methyl-2,3-hexanedione, 3,4-hexanedione and 2,3-heptanedione are well transformed. In addition, surprisingly alkyl phenyl dicarbonyls, like 2-hydroxy-1-phenylpropan-1-one and phenylglyoxal are accepted, whereas their derivatives with two phenyl groups are not substrates. Supplementation of Mn²⁺ (1 mM) increases BcBDH's activity in biotransformations. Furthermore, the biocatalytic reduction of 5-methyl-2,3-hexanedione to mainly 5-methyl-3-hydroxy-2-hexanone with only small amounts of 5-methyl-2-hydroxy-3-hexanone within an enzyme membrane reactor is demonstrated. Y1 - 2020 U6 - http://dx.doi.org/10.1039/D0RA02066D SN - 2046-2069 VL - 10 SP - 12206 EP - 12216 PB - Royal Society of Chemistry (RSC) CY - Cambridge ER - TY - JOUR A1 - Welden, Rene A1 - Schöning, Michael Josef A1 - Wagner, Patrick H. A1 - Wagner, Torsten T1 - Light-Addressable Electrodes for Dynamic and Flexible Addressing of Biological Systems and Electrochemical Reactions JF - Sensors N2 - In this review article, we are going to present an overview on possible applications of light-addressable electrodes (LAE) as actuator/manipulation devices besides classical electrode structures. For LAEs, the electrode material consists of a semiconductor. Illumination with a light source with the appropiate wavelength leads to the generation of electron-hole pairs which can be utilized for further photoelectrochemical reaction. Due to recent progress in light-projection technologies, highly dynamic and flexible illumination patterns can be generated, opening new possibilities for light-addressable electrodes. A short introduction on semiconductor–electrolyte interfaces with light stimulation is given together with electrode-design approaches. Towards applications, the stimulation of cells with different electrode materials and fabrication designs is explained, followed by analyte-manipulation strategies and spatially resolved photoelectrochemical deposition of different material types. Y1 - 2020 U6 - http://dx.doi.org/10.3390/s20061680 SN - 1424-8220 VL - 20 IS - 6 PB - MDPI CY - Basel ER - TY - JOUR A1 - Molinnus, Denise A1 - Drinic, Aleksander A1 - Iken, Heiko A1 - Kröger, Nadja A1 - Zinser, Max A1 - Smeets, Ralf A1 - Köpf, Marius A1 - Kopp, Alexander A1 - Schöning, Michael Josef T1 - Towards a flexible electrochemical biosensor fabricated from biocompatible Bombyx mori silk JF - Biosensors and Bioelectronics Y1 - 2021 U6 - http://dx.doi.org/10.1016/j.bios.2021.113204 SN - 0956-5663 VL - 183 IS - Art. 113204 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Wert, Stefan A1 - Iken, Heiko A1 - Schöning, Michael Josef A1 - Matysik, Frank-Michael T1 - Development of a temperature‐pulse enhanced electrochemical glucose biosensor and characterization of its stability via scanning electrochemical microscopy JF - Electroanalysis N2 - Glucose oxidase (GOx) is an enzyme frequently used in glucose biosensors. As increased temperatures can enhance the performance of electrochemical sensors, we investigated the impact of temperature pulses on GOx that was drop-coated on flattened Pt microwires. The wires were heated by an alternating current. The sensitivity towards glucose and the temperature stability of GOx was investigated by amperometry. An up to 22-fold increase of sensitivity was observed. Spatially resolved enzyme activity changes were investigated via scanning electrochemical microscopy. The application of short (<100 ms) heat pulses was associated with less thermal inactivation of the immobilized GOx than long-term heating. Y1 - 2021 U6 - http://dx.doi.org/10.1002/elan.202100089 SN - 1521-4109 IS - Early View PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Yoshinobu, Tatsuo A1 - Schöning, Michael Josef T1 - Light-addressable potentiometric sensors (LAPS) for cell monitoring and biosensing JF - Current Opinion in Electrochemistry Y1 - 2021 U6 - http://dx.doi.org/10.1016/j.coelec.2021.100727 SN - 2451-9103 IS - In Press, Journal Pre-proof PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Givanoudi, Stella A1 - Cornelis, Peter A1 - Rasschaert, Geertrui A1 - Wackers, Gideon A1 - Iken, Heiko A1 - Rolka, David A1 - Yongabi, Derick A1 - Robbens, Johan A1 - Schöning, Michael Josef A1 - Heyndrickx, Marc A1 - Wagner, Patrick T1 - Selective Campylobacter detection and quantification in poultry: A sensor tool for detecting the cause of a common zoonosis at its source JF - Sensors and Actuators B: Chemical Y1 - 2021 U6 - http://dx.doi.org/10.1016/j.snb.2021.129484 SN - 0925-4005 IS - In Press, Journal Pre-proof SP - Article 129484 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Jablonski, Melanie A1 - Poghossian, Arshak A1 - Severin, Robin A1 - Keusgen, Michael A1 - Wege, Christian A1 - Schöning, Michael Josef T1 - Capacitive Field-Effect Biosensor Studying Adsorption of Tobacco Mosaic Virus Particles JF - Micromachines N2 - Plant virus-like particles, and in particular, tobacco mosaic virus (TMV) particles, are increasingly being used in nano- and biotechnology as well as for biochemical sensing purposes as nanoscaffolds for the high-density immobilization of receptor molecules. The sensitive parameters of TMV-assisted biosensors depend, among others, on the density of adsorbed TMV particles on the sensor surface, which is affected by both the adsorption conditions and surface properties of the sensor. In this work, Ta₂O₅-gate field-effect capacitive sensors have been applied for the label-free electrical detection of TMV adsorption. The impact of the TMV concentration on both the sensor signal and the density of TMV particles adsorbed onto the Ta₂O₅-gate surface has been studied systematically by means of field-effect and scanning electron microscopy methods. In addition, the surface density of TMV particles loaded under different incubation times has been investigated. Finally, the field-effect sensor also demonstrates the label-free detection of penicillinase immobilization as model bioreceptor on TMV particles. KW - capacitive field-effect sensor KW - plant virus detection KW - tobacco mosaic virus (TMV) KW - TMV adsorption KW - Ta₂O₅ gate Y1 - 2021 U6 - http://dx.doi.org/10.3390/mi12010057 VL - 12 IS - 1 PB - MDPI CY - Basel ER - TY - JOUR A1 - Bertz, Morten A1 - Molinnus, Denise A1 - Schöning, Michael Josef A1 - Homma, Takayuki T1 - Real-time monitoring of H₂O₂ sterilization on individual bacillus atrophaeus spores by optical sensing with trapping Raman spectroscopy JF - Chemosensors N2 - Hydrogen peroxide (H₂O₂), a strong oxidizer, is a commonly used sterilization agent employed during aseptic food processing and medical applications. To assess the sterilization efficiency with H₂O₂, bacterial spores are common microbial systems due to their remarkable robustness against a wide variety of decontamination strategies. Despite their widespread use, there is, however, only little information about the detailed time-resolved mechanism underlying the oxidative spore death by H₂O₂. In this work, we investigate chemical and morphological changes of individual Bacillus atrophaeus spores undergoing oxidative damage using optical sensing with trapping Raman microscopy in real-time. The time-resolved experiments reveal that spore death involves two distinct phases: (i) an initial phase dominated by the fast release of dipicolinic acid (DPA), a major spore biomarker, which indicates the rupture of the spore’s core; and (ii) the oxidation of the remaining spore material resulting in the subsequent fragmentation of the spores’ coat. Simultaneous observation of the spore morphology by optical microscopy corroborates these mechanisms. The dependence of the onset of DPA release and the time constant of spore fragmentation on H₂O₂ shows that the formation of reactive oxygen species from H₂O₂ is the rate-limiting factor of oxidative spore death. KW - DPA (dipicolinic acid) KW - sterilization KW - Bacillus atrophaeus spores KW - optical trapping KW - Raman spectroscopy KW - optical sensor setup Y1 - 2023 U6 - http://dx.doi.org/10.3390/chemosensors11080445 SN - 2227-9040 N1 - This article belongs to the Special Issue "Biosensors and Chemical Sensors for Food and Healthcare Monitoring—Celebrating the 10th Anniversary" VL - 8 IS - 11 PB - MDPI CY - Basel ER - TY - JOUR A1 - Wendlandt, Tim A1 - Koch, Claudia A1 - Britz, Beate A1 - Liedek, Anke A1 - Schmidt, Nora A1 - Werner, Stefan A1 - Gleba, Yuri A1 - Vahidpour, Farnoosh A1 - Welden, Melanie A1 - Poghossian, Arshak A1 - Schöning, Michael Josef T1 - Facile Purification and Use of Tobamoviral Nanocarriers for Antibody-Mediated Display of a Two-Enzyme System JF - Viruses N2 - Immunosorbent turnip vein clearing virus (TVCV) particles displaying the IgG-binding domains D and E of Staphylococcus aureus protein A (PA) on every coat protein (CP) subunit (TVCVPA) were purified from plants via optimized and new protocols. The latter used polyethylene glycol (PEG) raw precipitates, from which virions were selectively re-solubilized in reverse PEG concentration gradients. This procedure improved the integrity of both TVCVPA and the wild-type subgroup 3 tobamovirus. TVCVPA could be loaded with more than 500 IgGs per virion, which mediated the immunocapture of fluorescent dyes, GFP, and active enzymes. Bi-enzyme ensembles of cooperating glucose oxidase and horseradish peroxidase were tethered together on the TVCVPA carriers via a single antibody type, with one enzyme conjugated chemically to its Fc region, and the other one bound as a target, yielding synthetic multi-enzyme complexes. In microtiter plates, the TVCVPA-displayed sugar-sensing system possessed a considerably increased reusability upon repeated testing, compared to the IgG-bound enzyme pair in the absence of the virus. A high coverage of the viral adapters was also achieved on Ta2O5 sensor chip surfaces coated with a polyelectrolyte interlayer, as a prerequisite for durable TVCVPA-assisted electrochemical biosensing via modularly IgG-assembled sensor enzymes. KW - biosensor KW - horseradish peroxidase (HRP) KW - glucose oxidase (GOx) KW - enzyme cascade KW - turnip vein clearing virus (TVCV) KW - tobacco mosaic virus (TMV) Y1 - 2023 U6 - http://dx.doi.org/doi.org/10.3390/v15091951 SN - 1999-4915 N1 - This article belongs to the Special Issue "Tobamoviruses 2023" VL - 9 IS - 15 PB - MDPI CY - Basel ER - TY - JOUR A1 - Morais, Paulo V. A1 - Suman, Pedro H. A1 - Schöning, Michael Josef A1 - Siqueira Junior, José R. A1 - Orlandi, Marcelo O. T1 - Layer-by-layer film based on Sn₃O₄ nanobelts as sensing units to detect heavy metals using a capacitive field-effect sensor platform JF - Chemosensors N2 - Lead and nickel, as heavy metals, are still used in industrial processes, and are classified as “environmental health hazards” due to their toxicity and polluting potential. The detection of heavy metals can prevent environmental pollution at toxic levels that are critical to human health. In this sense, the electrolyte–insulator–semiconductor (EIS) field-effect sensor is an attractive sensing platform concerning the fabrication of reusable and robust sensors to detect such substances. This study is aimed to fabricate a sensing unit on an EIS device based on Sn₃O₄ nanobelts embedded in a polyelectrolyte matrix of polyvinylpyrrolidone (PVP) and polyacrylic acid (PAA) using the layer-by-layer (LbL) technique. The EIS-Sn₃O₄ sensor exhibited enhanced electrochemical performance for detecting Pb²⁺ and Ni²⁺ ions, revealing a higher affinity for Pb²⁺ ions, with sensitivities of ca. 25.8 mV/decade and 2.4 mV/decade, respectively. Such results indicate that Sn₃O₄ nanobelts can contemplate a feasible proof-of-concept capacitive field-effect sensor for heavy metal detection, envisaging other future studies focusing on environmental monitoring. KW - Sn₃O₄ KW - nanobelts KW - field-effect sensor KW - LbL films KW - heavy metals Y1 - 2023 U6 - http://dx.doi.org/10.3390/chemosensors11080436 SN - 2227-9040 N1 - This article belongs to the Special Issue The Application of Electrochemical Sensors or Biosensors Based on Nanomaterials VL - 11 IS - 8 PB - MDPI CY - Basel ER - TY - JOUR A1 - Karschuck, Tobias A1 - Poghossian, Arshak A1 - Ser, Joey A1 - Tsokolakyan, Astghik A1 - Achtsnicht, Stefan A1 - Wagner, Patrick A1 - Schöning, Michael Josef T1 - Capacitive model of enzyme-modified field-effect biosensors: Impact of enzyme coverage JF - Sensors and Actuators B: Chemical N2 - Electrolyte-insulator-semiconductor capacitors (EISCAP) belong to field-effect sensors having an attractive transducer architecture for constructing various biochemical sensors. In this study, a capacitive model of enzyme-modified EISCAPs has been developed and the impact of the surface coverage of immobilized enzymes on its capacitance-voltage and constant-capacitance characteristics was studied theoretically and experimentally. The used multicell arrangement enables a multiplexed electrochemical characterization of up to sixteen EISCAPs. Different enzyme coverages have been achieved by means of parallel electrical connection of bare and enzyme-covered single EISCAPs in diverse combinations. As predicted by the model, with increasing the enzyme coverage, both the shift of capacitance-voltage curves and the amplitude of the constant-capacitance signal increase, resulting in an enhancement of analyte sensitivity of the EISCAP biosensor. In addition, the capability of the multicell arrangement with multi-enzyme covered EISCAPs for sequentially detecting multianalytes (penicillin and urea) utilizing the enzymes penicillinase and urease has been experimentally demonstrated and discussed. KW - Field-effect biosensor KW - Capacitive model KW - Enzyme coverage KW - Multianalyte detection KW - Penicillin Y1 - 2024 U6 - http://dx.doi.org/10.1016/j.snb.2024.135530 SN - 0925-4005 (Print) SN - 1873-3077 (Online) N1 - Corresponding Author: Michael J. Schöning VL - 408 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Gasparyan, F. V. A1 - Poghossian, Arshak A1 - Vitusevich, S. A. A1 - Petrychuk, M. V. A1 - Sydoruk, V. A. A1 - Surmalyan, A. V. A1 - Siqueira, J. R. A1 - Oliveira, O. N. A1 - Offenhäusser, A. A1 - Schöning, Michael Josef T1 - Low Frequency Noise In Electrolyte-Gate Field-Effect Devices Functionalized With Dendrimer/Carbon-Nanotube Multilayers JF - Noise and fluctuations : 20th International Conference on Noise and Fluctuations, ICNF 2009, Pisa, Italy, 14 - 19 June 2009 / ed. Massimo Macucci; Giovanni Basso Y1 - 2009 SN - 9780735406650 N1 - AIP conference proceedings ; 1129 ; International Conference on Noise and Fluctuations ; (20, 2009, Pisa) SP - 133 EP - 136 PB - American Inst. of Physics CY - Melville, NY ER -