TY - CHAP A1 - Cacciatore, Pamela A1 - Butenweg, Christoph T1 - Seismic safety of cylindrical granular material steel silos under seismic loading T2 - Seismic design of industrial facilities 2020 Y1 - 2020 SN - 978-3-86359-729-0 N1 - 2nd International Conference on Seismic Design of Industrial Facilities (Aachen, Germany, March 4-5, 2020) SP - 231 EP - 244 PB - Apprimus Verlag CY - Aachen ER - TY - CHAP A1 - Tomić, Igor A1 - Penna, Andrea A1 - DeJong, Matthew A1 - Butenweg, Christoph A1 - Correia, António A. A1 - Candeias, Paulo X. A1 - Senaldi, Ilaria A1 - Guerrini, Gabriele A1 - Malomo, Daniele A1 - Beyer, Katrin T1 - Seismic testing of adjacent interacting masonry structures T2 - 12th International Conference on Structural Analysis of Historical Constructions (SAHC 2020) N2 - In many historical centres in Europe, stone masonry buildings are part of building aggregates, which developed when the layout of the city or village was densified. In these aggregates, adjacent buildings share structural walls to support floors and roofs. Meanwhile, the masonry walls of the façades of adjacent buildings are often connected by dry joints since adjacent buildings were constructed at different times. Observations after for example the recent Central Italy earthquakes showed that the dry joints between the building units were often the first elements to be damaged. As a result, the joints opened up leading to pounding between the building units and a complicated interaction at floor and roof beam supports. The analysis of such building aggregates is very challenging and modelling guidelines do not exist. Advances in the development of analysis methods have been impeded by the lack of experimental data on the seismic response of such aggregates. The objective of the project AIMS (Seismic Testing of Adjacent Interacting Masonry Structures), included in the H2020 project SERA, is to provide such experimental data by testing an aggregate of two buildings under two horizontal components of dynamic excitation. The test unit is built at half-scale, with a two-storey building and a one-storey building. The buildings share one common wall while the façade walls are connected by dry joints. The floors are at different heights leading to a complex dynamic response of this smallest possible building aggregate. The shake table test is conducted at the LNEC seismic testing facility. The testing sequence comprises four levels of shaking: 25%, 50%, 75% and 100% of nominal shaking table capacity. Extensive instrumentation, including accelerometers, displacement transducers and optical measurement systems, provides detailed information on the building aggregate response. Special attention is paid to the interface opening, the globa KW - Historical centres KW - Stone masonry KW - Adjacent buildings KW - Shake table test Y1 - 2020 U6 - https://doi.org/10.23967/sahc.2021.234 N1 - 12th International Conference on Structural Analysis of Historical Constructions (SAHC 2021), September 29-30 and October 1, 2021, online N1 - (SAHC 2020 ursprünglich geplant für September 2020 in Barelona - verschoben wg. Covid-Pandemie) SP - 1 EP - 12 ER - TY - CHAP A1 - Oetringer, Kerstin A1 - Dümmler, Andreas A1 - Göttsche, Joachim T1 - Neues Modell zur 1D-Simulation der indirekten Verdunstungskühlung T2 - DKV‐Tagung 2020, AA II.1 N2 - Im Projekt Coolplan‐ AIR geht es um die Fortentwicklung und Feld‐ Validierung eines Berechnungs‐ und Auslegungstools zur energieeffizienten Kühlung von Gebäuden mit luftgestützten Systemen. Neben dem Aufbau und der Weiterentwicklung von Simulationsmodellen erfolgen Vermessungen der Gesamtsysteme anhand von Praxisanlagen im Feld. Eine der betrachteten Anlagen arbeitet mit indirekter Verdunstung. Diese Veröffentlichung zeigt den Entwicklungsprozess und den Aufbau des Simulationsmodells zur Verdunstungskühlung in der Simulationsumgebung Matlab‐ Simulink mit der CARNOT‐ Toolbox. Das besondere Augenmerk liegt dabei auf dem physikalischen Modell des Wärmeübertragers, in dem die Verdunstung implementiert ist. Dem neuen Modellansatz liegt die Annahme einer aus der Enthalpie‐ Betrachtung hergeleiteten effektiven Wärmekapazität zugrunde. Des Weiteren wird der Befeuchtungsgrad als konstant angesehen und eine standardisierte Zunahme der Wärmeübertragung des feuchten gegenüber dem trockenen Wärmeübertrager angenommen. Die Validierung des Modells erfolgte anhand von Literaturdaten. Für den trockenen Wärmetauscher ist der maximale absolute Fehler der berechneten Austrittstemperatur (Zuluft) kleiner als ±0.1 K und für den nassen Wärmetauscher (Kühlfall) unter der Annahme eines konstanten Verdunstungsgrades kleiner als ±0.4 K. Y1 - 2020 N1 - Deutsche Kälte- und Klimatagung, 19-20 November 2020, online SP - 250 EP - 262 ER - TY - CHAP A1 - Paulsen, Svea A1 - Hoffstadt, Kevin A1 - Krafft, Simone A1 - Leite, A. A1 - Zang, J. A1 - Fonseca-Zang, W. A1 - Kuperjans, Isabel T1 - Continuous biogas production from sugarcane as sole substrate T2 - Energy Reports N2 - A German–Brazilian research project investigates sugarcane as an energy plant in anaerobic digestion for biogas production. The aim of the project is a continuous, efficient, and stable biogas process with sugarcane as the substrate. Tests are carried out in a fermenter with a volume of 10 l. In order to optimize the space–time load to achieve a stable process, a continuous process in laboratory scale has been devised. The daily feed in quantity and the harvest time of the substrate sugarcane has been varied. Analyses of the digester content were conducted twice per week to monitor the process: The ratio of inorganic carbon content to volatile organic acid content (VFA/TAC), the concentration of short-chain fatty acids, the organic dry matter, the pH value, and the total nitrogen, phosphate, and ammonium concentrations were monitored. In addition, the gas quality (the percentages of CO₂, CH₄, and H₂) and the quantity of the produced gas were analyzed. The investigations have exhibited feasible and economical production of biogas in a continuous process with energy cane as substrate. With a daily feeding rate of 1.68gᵥₛ/l*d the average specific gas formation rate was 0.5 m3/kgᵥₛ. The long-term study demonstrates a surprisingly fast metabolism of short-chain fatty acids. This indicates a stable and less susceptible process compared to other substrates. Y1 - 2020 U6 - https://doi.org/10.1016/j.egyr.2019.08.035 N1 - 6th International Conference on Energy and Environment Research, ICEER 2019, 22–25 July, University of Aveiro, Portugal VL - 6 IS - Supplement 1 SP - 153 EP - 158 PB - Elsevier ER - TY - CHAP A1 - Sildatke, Michael A1 - Karwanni, Hendrik A1 - Kraft, Bodo A1 - Schmidts, Oliver A1 - Zündorf, Albert T1 - Automated Software Quality Monitoring in Research Collaboration Projects T2 - ICSEW'20: Proceedings of the IEEE/ACM 42nd International Conference on Software Engineering Workshops N2 - In collaborative research projects, both researchers and practitioners work together solving business-critical challenges. These projects often deal with ETL processes, in which humans extract information from non-machine-readable documents by hand. AI-based machine learning models can help to solve this problem. Since machine learning approaches are not deterministic, their quality of output may decrease over time. This fact leads to an overall quality loss of the application which embeds machine learning models. Hence, the software qualities in development and production may differ. Machine learning models are black boxes. That makes practitioners skeptical and increases the inhibition threshold for early productive use of research prototypes. Continuous monitoring of software quality in production offers an early response capability on quality loss and encourages the use of machine learning approaches. Furthermore, experts have to ensure that they integrate possible new inputs into the model training as quickly as possible. In this paper, we introduce an architecture pattern with a reference implementation that extends the concept of Metrics Driven Research Collaboration with an automated software quality monitoring in productive use and a possibility to auto-generate new test data coming from processed documents in production. Through automated monitoring of the software quality and auto-generated test data, this approach ensures that the software quality meets and keeps requested thresholds in productive use, even during further continuous deployment and changing input data. Y1 - 2020 U6 - https://doi.org/10.1145/3387940.3391478 N1 - ICSE '20: 42nd International Conference on Software Engineering, Seoul, Republic of Korea, 27 June 2020 - 19 July 2020 SP - 603 EP - 610 PB - IEEE CY - New York, NY ER - TY - CHAP A1 - Sattler, Johannes Christoph A1 - Chico Caminos, Ricardo Alexander A1 - Ürlings, Nicolas A1 - Dutta, Siddharth A1 - Ruiz, Victor A1 - Kalogirou, Soteris A1 - Ktistis, Panayiotis A1 - Agathokleous, Rafaela A1 - Jung, Christian A1 - Alexopoulos, Spiros A1 - Atti, Vikrama Naga Babu A1 - Teixeira Boura, Cristiano José A1 - Herrmann, Ulf T1 - Operational experience and behaviour of a parabolic trough collector system with concrete thermal energy storage for process steam generation in Cyprus T2 - AIP Conference Proceedings N2 - As part of the transnational research project EDITOR, a parabolic trough collector system (PTC) with concrete thermal energy storage (C-TES) was installed and commissioned in Limassol, Cyprus. The system is located on the premises of the beverage manufacturer KEAN Soft Drinks Ltd. and its function is to supply process steam for the factory's pasteurisation process [1]. Depending on the factory's seasonally varying capacity for beverage production, the solar system delivers between 5 and 25 % of the total steam demand. In combination with the C-TES, the solar plant can supply process steam on demand before sunrise or after sunset. Furthermore, the C-TES compensates the PTC during the day in fluctuating weather conditions. The parabolic trough collector as well as the control and oil handling unit is designed and manufactured by Protarget AG, Germany. The C-TES is designed and produced by CADE Soluciones de Ingeniería, S.L., Spain. In the focus of this paper is the description of the operational experience with the PTC, C-TES and boiler during the commissioning and operation phase. Additionally, innovative optimisation measures are presented. Y1 - 2020 U6 - https://doi.org/10.1063/5.0029278 N1 - SOLARPACES 2019: International Conference on Concentrating Solar Power and Chemical Energy Systems, 1–4 October 2019, Daegu, South Korea IS - 2303 SP - 140004-1 EP - 140004-10 ER -