TY - CHAP A1 - Pirovano, Laura A1 - Seefeldt, Patric A1 - Dachwald, Bernd A1 - Noomen, Ron T1 - Attitude and orbital modeling of an uncontrolled solar-sail experiment in low-Earth orbit T2 - 25th International Symposium on Space Flight Dynamics ISSFD N2 - Gossamer-1 is the first project of the three-step Gossamer roadmap, the purpose of which is to develop, prove and demonstrate that solar-sail technology is a safe and reliable propulsion technique for long-lasting and high-energy missions. This paper firstly presents the structural analysis performed on the sail to understand its elastic behavior. The results are then used in attitude and orbital simulations. The model considers the main forces and torques that a satellite experiences in low-Earth orbit coupled with the sail deformation. Doing the simulations for varying initial conditions in attitude and rotation rate, the results show initial states to avoid and maximum rotation rates reached for correct and faulty deployment of the sail. Lastly comparisons with the classic flat sail model are carried out to test the hypothesis that the elastic behavior does play a role in the attitude and orbital behavior of the sail KW - Solar sail KW - Gossamer structures KW - Attitude dynamics KW - Orbital dynamics Y1 - 2015 N1 - 25th International Symposium on Space Flight Dynamics ISSFD October 19 – 23, 2015, Munich, Germany https://issfd.org/2015/ SP - 1 EP - 15 ER - TY - CHAP A1 - Dachwald, Bernd A1 - Kahle, Ralph A1 - Wie, Bong T1 - Solar sail Kinetic Energy Impactor (KEI) mission design tradeoffs for impacting and deflecting asteroid 99942 Apophis T2 - AIAA/AAS Astrodynamics Specialist Conference and Exhibit N2 - Near-Earth asteroid 99942 Apophis provides a typical example for the evolution of asteroid orbits that lead to Earth-impacts after a close Earth-encounter that results in a resonant return. Apophis will have a close Earth-encounter in 2029 with potential very close subsequent Earth-encounters (or even an impact) in 2036 or later, depending on whether it passes through one of several so-called gravitational keyholes during its 2029-encounter. Several pre-2029-deflection scenarios to prevent Apophis from doing this have been investigated so far. Because the keyholes are less than 1 km in size, a pre-2029 kinetic impact is clearly the best option because it requires only a small change in Apophis' orbit to nudge it out of a keyhole. A single solar sail Kinetic Energy Impactor (KEI) spacecraft that impacts Apophis from a retrograde trajectory with a very high relative velocity (75-80 km/s) during one of its perihelion passages at about 0.75 AU would be a feasible option to do this. The spacecraft consists of a 160 m x 160 m, 168 kg solar sail assembly and a 150 kg impactor. Although conventional spacecraft can also achieve the required minimum deflection of 1 km for this approx. 320 m-sized object from a prograde trajectory, our solar sail KEI concept also allows the deflection of larger objects. In this paper, we also show that, even after Apophis has flown through one of the gravitational keyholes in 2029, solar sail Kinetic Energy Impactor (KEI) spacecraft are still a feasible option to prevent Apophis from impacting the Earth, but many KEIs would be required for consecutive impacts to increase the total Earth-miss distance to a safe value. In this paper, we elaborate potential pre- and post-2029 KEI impact scenarios for a launch in 2020, and investigate tradeoffs between different mission parameters. KW - Solar Sail KW - Asteroid Deflection KW - Planetary Protection KW - Trajectory Optimization Y1 - 2006 U6 - http://dx.doi.org/10.2514/6.2006-6178 N1 - AIAA/AAS Astrodynamics Specialist Conference and Exhibit, 21 August 2006 - 24 August 2006, Keystone, Colorado(USA). SP - 1 EP - 20 ER - TY - CHAP A1 - Hallmann, Marcus A1 - Heidecker, Ansgar A1 - Schlotterer, Markus A1 - Dachwald, Bernd T1 - GTOC8: results and methods of team 15 DLR T2 - 26th AAS/AIAA Space Flight Mechanics Meeting, Napa, CA N2 - This paper describes the results and methods used during the 8th Global Trajectory Optimization Competition (GTOC) of the DLR team. Trajectory optimization is crucial for most of the space missions and usually can be formulated as a global optimization problem. A lot of research has been done to different type of mission problems. The most demanding ones are low thrust transfers with e.g. gravity assist sequences. In that case the optimal control problem is combined with an integer problem. In most of the GTOCs we apply a filtering of the problem based on domain knowledge. Y1 - 2016 N1 - 26th AAS/AIAA Space Flight Mechanics Meeting, February 14-18, 2016, Napa, California, U.S.A. Napa, CA ER - TY - CHAP A1 - Duprat, J. A1 - Dachwald, Bernd A1 - Hilchenbach, M. A1 - Engrand, Cecile A1 - Espe, C. A1 - Feldmann, M. A1 - Francke, G. A1 - Görög, Mark A1 - Lüsing, N. A1 - Langenhorst, Falko T1 - The MARVIN project: a micrometeorite harvester in Antarctic snow T2 - 44th Lunar and Planetary Science Conference N2 - MARVIN is an automated drilling and melting probe dedicated to collect pristine interplanetary dust particles (micrometeorites) from central Antarctica snow. Y1 - 2013 N1 - 44th Lunar and Planetary Science Conference, March 18-22, 2013, The Woodlands, Texas ER - TY - CHAP A1 - Dachwald, Bernd A1 - Seboldt, Wolfgang A1 - Loeb, Horst W. A1 - Schartner, Karl-Heinz T1 - A comparison of SEP and NEP for a main belt asteroid sample return mission T2 - 7th International Symposium on Launcher Technologies, Barcelona, Spain, 02-05 April 2007 N2 - Innovative interplanetary deep space missions, like a main belt asteroid sample return mission, require ever larger velocity increments (∆V s) and thus ever more demanding propulsion capabilities. Providing much larger exhaust velocities than chemical high-thrust systems, electric low-thrust space-propulsion systems can significantly enhance or even enable such high-energy missions. In 1995, a European-Russian Joint Study Group (JSG) presented a study report on “Advanced Interplanetary Missions Using Nuclear-Electric Propulsion” (NEP). One of the investigated reference missions was a sample return (SR) from the main belt asteroid (19) Fortuna. The envisaged nuclear power plant, Topaz-25, however, could not be realized and also the worldwide developments in space reactor hardware stalled. In this paper, we investigate, whether such a mission is also feasible using a solar electric propulsion (SEP) system and compare our SEP results to corresponding NEP results. Y1 - 2007 SP - 1 EP - 10 ER - TY - CHAP A1 - Dachwald, Bernd T1 - Global optimization of low-thrust space missions using evolutionary neurocontrol T2 - Proceedings of the international workshop on global optimization N2 - Low-thrust space propulsion systems enable flexible high-energy deep space missions, but the design and optimization of the interplanetary transfer trajectory is usually difficult. It involves much experience and expert knowledge because the convergence behavior of traditional local trajectory optimization methods depends strongly on an adequate initial guess. Within this extended abstract, evolutionary neurocontrol, a method that fuses artificial neural networks and evolutionary algorithms, is proposed as a smart global method for low-thrust trajectory optimization. It does not require an initial guess. The implementation of evolutionary neurocontrol is detailed and its performance is shown for an exemplary mission. KW - Evolutionary Neurocontrol KW - Spacecraft Trajectory Optimization KW - Low-Thrust Propulsion Y1 - 2005 SP - 85 EP - 90 ER - TY - CHAP A1 - Dachwald, Bernd A1 - Baturkin, Volodymyr A1 - Coverstone, Victoria A1 - Diedrich, Ben A1 - Garbe, Gregory A1 - Görlich, Marianne A1 - Leipold, Manfred A1 - Lura, Franz A1 - Macdonald, Malcolm A1 - McInnes, Colin A1 - Mengali, Giovanni A1 - Quarta, Alessandro A1 - Rios-Reyes, Leonel A1 - Scheeres, Daniel J. A1 - Seboldt, Wolfgang A1 - Wie, Bong T1 - Potential effects of optical solar sail degredation on trajectory design T2 - AAS/AIAA Astrodynamics Specialist N2 - The optical properties of the thin metalized polymer films that are projected for solar sails are assumed to be affected by the erosive effects of the space environment. Their degradation behavior in the real space environment, however, is to a considerable degree indefinite, because initial ground test results are controversial and relevant inspace tests have not been made so far. The standard optical solar sail models that are currently used for trajectory design do not take optical degradation into account, hence its potential effects on trajectory design have not been investigated so far. Nevertheless, optical degradation is important for high-fidelity solar sail mission design, because it decreases both the magnitude of the solar radiation pressure force acting on the sail and also the sail control authority. Therefore, we propose a simple parametric optical solar sail degradation model that describes the variation of the sail film’s optical coefficients with time, depending on the sail film’s environmental history, i.e., the radiation dose. The primary intention of our model is not to describe the exact behavior of specific film-coating combinations in the real space environment, but to provide a more general parametric framework for describing the general optical degradation behavior of solar sails. Using our model, the effects of different optical degradation behaviors on trajectory design are investigated for various exemplary missions. Y1 - 2005 N1 - 2005 AAS/AIAA Astrodynamics Specialist Conference, 7-11.08.2005. Lake Tahoe, California https://www.space-flight.org/AAS_meetings/2005_astro/2005_astro.html SP - 1 EP - 23 ER - TY - CHAP A1 - Hille, Sebastian A1 - Stumpf, Eike A1 - Mayntz, Joscha A1 - Dahmann, Peter T1 - Prediction of sound exposure caused by a landing motor glider with recuperating propellers T2 - AIAA SCITECH 2023 Forum N2 - This paper presents an approach to predicting the sound exposure on the ground caused by a landing aircraft with recuperating propellers. The noise source along the trajectory of a flight specified for a steeper approach is simulated based on measurements of sound power levels and additional parameters of a single propeller placed in a wind tunnel. To validate the measured data/measurement results, these simulations are also supported by overflight measurements of a test aircraft. It is shown that the simple source models of propellers do not provide fully satisfactory results since the sound levels are estimated too low. Nevertheless, with a further reference comparison, margins for an acceptable increase in the sound power level of the aircraft on its now steeper approach path could be estimated. Thus, in this case, a +7 dB increase in SWL would not increase the SEL compared to the conventional approach within only 2 km ahead of the airfield. Y1 - 2023 U6 - http://dx.doi.org/10.2514/6.2023-0211 N1 - AIAA SCITECH 2023 Forum, 23-27 January 2023, National Harbor, MD & Online PB - AIAA ER - TY - CHAP A1 - Horikawa, Atsushi A1 - Ashikaga, Mitsugu A1 - Yamaguchi, Masato A1 - Ogino, Tomoyuki A1 - Aoki, Shigeki A1 - Wirsum, Manfred A1 - Funke, Harald A1 - Kusterer, Karsten T1 - Combined heat and power supply demonstration of Micro-Mix Hydrogen Combustion Applied to M1A-17 Gas Turbine T2 - Proceedings of ASME Turbo Expo 2022: Turbomachinery Technical Conference and Exposition (GT2022) (Volume 3A) N2 - Kawasaki Heavy Industries, Ltd. (KHI), Aachen University of Applied Sciences, and B&B-AGEMA GmbH have investigated the potential of low NOx micro-mix (MMX) hydrogen combustion and its application to an industrial gas turbine combustor. Engine demonstration tests of a MMX combustor for the M1A-17 gas turbine with a co-generation system were conducted in the hydrogen-fueled power generation plant in Kobe City, Japan. This paper presents the results of the commissioning test and the combined heat and power (CHP) supply demonstration. In the commissioning test, grid interconnection, loading tests and load cut-off tests were successfully conducted. All measurement results satisfied the Japanese environmental regulation values. Dust and soot as well as SOx were not detected. The NOx emissions were below 84 ppmv at 15 % O2. The noise level at the site boundary was below 60 dB. The vibration at the site boundary was below 45 dB. During the combined heat and power supply demonstration, heat and power were supplied to neighboring public facilities with the MMX combustion technology and 100 % hydrogen fuel. The electric power output reached 1800 kW at which the NOx emissions were 72 ppmv at 15 % O2, and 60 %RH. Combustion instabilities were not observed. The gas turbine efficiency was improved by about 1 % compared to a non-premixed type combustor with water injection as NOx reduction method. During a total equivalent operation time of 1040 hours, all combustor parts, the M1A-17 gas turbine as such, and the co-generation system were without any issues. KW - industrial gas turbine KW - combustor development KW - fuels KW - hydrogen KW - emission Y1 - 2022 SN - 978-0-7918-8599-4 U6 - http://dx.doi.org/10.1115/GT2022-81620 N1 - ASME Turbo Expo 2022: Turbomachinery Technical Conference and Exposition June 13–17, 2022 Rotterdam, Netherlands PB - American Society of Mechanical Engineers CY - Fairfield ER - TY - CHAP A1 - Möhren, Felix A1 - Bergmann, Ole A1 - Janser, Frank A1 - Braun, Carsten T1 - On the determination of harmonic propeller loads T2 - AIAA SCITECH 2023 Forum N2 - Dynamic loads significantly impact the structural design of propeller blades due to fatigue and static strength. Since propellers are elastic structures, deformations and aerodynamic loads are coupled. In the past, propeller manufacturers established procedures to determine unsteady aerodynamic loads and the structural response with analytical steady-state calculations. According to the approach, aeroelastic coupling primarily consists of torsional deformations. They neglect bending deformations, deformation velocities, and inertia terms. This paper validates the assumptions above for a General Aviation propeller and a lift propeller for urban air mobility or large cargo drones. Fully coupled reduced-order simulations determine the dynamic loads in the time domain. A quasi-steady blade element momentum approach transfers loads to one-dimensional finite beam elements. The simulation results are in relatively good agreement with the analytical method for the General Aviation propeller but show increasing errors for the slender lift propeller. The analytical approach is modified to consider the induced velocities. Still, inertia and velocity proportional terms play a significant role for the lift propeller due to increased elasticity. The assumption that only torsional deformations significantly impact the dynamic loads of propellers is not valid. Adequate determination of dynamic loads of such designs requires coupled aeroelastic simulations or advanced analytical procedures. Y1 - 2023 U6 - http://dx.doi.org/10.2514/6.2023-2404 N1 - AIAA SCITECH 2023 Forum, 23-27 January 2023, National Harbor, MD & Online PB - AIAA ER - TY - CHAP A1 - Funke, Harald A1 - Beckmann, Nils A1 - Stefan, Lukas A1 - Keinz, Jan T1 - Hydrogen combustor integration study for a medium range aircraft engine using the dry-low NOx “Micromix” combustion principle T2 - Proceedings of the ASME Turbo Expo 2023: Turbomachinery Technical Conference and Exposition. Volume 1: Aircraft Engine. Boston, Massachusetts, USA. June 26–30, 2023 N2 - The feasibility study presents results of a hydrogen combustor integration for a Medium-Range aircraft engine using the Dry-Low-NOₓ Micromix combustion principle. Based on a simplified Airbus A320-type flight mission, a thermodynamic performance model of a kerosene and a hydrogen-powered V2530-A5 engine is used to derive the thermodynamic combustor boundary conditions. A new combustor design using the Dry-Low NOx Micromix principle is investigated by slice model CFD simulations of a single Micromix injector for design and off-design operation of the engine. Combustion characteristics show typical Micromix flame shapes and good combustion efficiencies for all flight mission operating points. Nitric oxide emissions are significant below ICAO CAEP/8 limits. For comparison of the Emission Index (EI) for NOₓ emissions between kerosene and hydrogen operation, an energy (kerosene) equivalent Emission Index is used. A full 15° sector model CFD simulation of the combustion chamber with multiple Micromix injectors including inflow homogenization and dilution and cooling air flows investigates the combustor integration effects, resulting NOₓ emission and radial temperature distributions at the combustor outlet. The results show that the integration of a Micromix hydrogen combustor in actual aircraft engines is feasible and offers, besides CO₂ free combustion, a significant reduction of NOₓ emissions compared to kerosene operation. KW - emission index KW - nitric oxides KW - aircraft engine KW - Micromix KW - combustion KW - hydrogen Y1 - 2023 SN - 978-0-7918-8693-9 U6 - http://dx.doi.org/10.1115/GT2023-102370 N1 - Paper No. GT2023-102370, V001T01A022 PB - ASME CY - New York ER - TY - CHAP A1 - Gehler, M. A1 - Ober-Blöbaum, S. A1 - Dachwald, Bernd T1 - Application of discrete mechanics and optimal control to spacecraft in non-keplerian motion around small solar system bodies T2 - Procceedings of the 60th International Astronautical Congress N2 - Prolonged operations close to small solar system bodies require a sophisticated control logic to minimize propellant mass and maximize operational efficiency. A control logic based on Discrete Mechanics and Optimal Control (DMOC) is proposed and applied to both conventionally propelled and solar sail spacecraft operating at an arbitrarily shaped asteroid in the class of Itokawa. As an example, stand-off inertial hovering is considered, recently identified as a challenging part of the Marco Polo mission. The approach is easily extended to stand-off orbits. We show that DMOC is applicable to spacecraft control at small objects, in particular with regard to the fact that the changes in gravity are exploited by the algorithm to optimally control the spacecraft position. Furthermore, we provide some remarks on promising developments. KW - Spacecraft Y1 - 2009 SN - 978-161567908-9 N1 - 60th International Astronautical Congress 2009, IAC 2009; Daejeon; South Korea; 12 October 2009 through 16 October 2009 SP - 1360 EP - 1371 PB - Elsevier CY - Amsterdam ER - TY - CHAP A1 - Dachwald, Bernd A1 - Wurm, P. T1 - Design concept and modeling of an advanced solar photon thruster T2 - Advances in the Astronautical Sciences N2 - The so-called "compound solar sail", also known as "Solar Photon Thruster" (SPT), holds the potential of providing significant performance advantages over the flat solar sail. Previous SPT design concepts, however, do not consider shadowing effects and multiple reflections of highly concentrated solar radiation that would inevitably destroy the gossamer sail film. In this paper, we propose a novel advanced SPT (ASPT) design concept that does not suffer from these oversimplifications. We present the equations that describe the thrust force acting on such a sail system and compare its performance with respect to the conventional flat solar sail. KW - solar sails Y1 - 2009 SN - 978-087703554-1 SN - 00653438 N1 - 19th AAS/AIAA Space Flight Mechanics Meeting; Savannah, GA; United States; 8 February 2009 through 12 February 2009 SP - 723 EP - 740 PB - American Astronautical Society CY - San Diego, Calif. ER - TY - CHAP A1 - Dachwald, Bernd A1 - Wurm, P. T1 - Mission analysis for an advanced solar photon thruster T2 - 60th International Astronautical Congress 2009, IAC 2009 N2 - The so-called "compound solar sail", also known as "Solar Photon Thruster" (SPT), is a solar sail design concept, for which the two basic functions of the solar sail, namely light collection and thrust direction, are uncoupled. In this paper, we introduce a novel SPT concept, termed the Advanced Solar Photon Thruster (ASPT). This model does not suffer from the simplified assumptions that have been made for the analysis of compound solar sails in previous studies. We present the equations that describe the force, which acts on the ASPT. After a detailed design analysis, the performance of the ASPT with respect to the conventional flat solar sail (FSS) is investigated for three interplanetary mission scenarios: An Earth-Venus rendezvous, where the solar sail has to spiral towards the Sun, an Earth-Mars rendezvous, where the solar sail has to spiral away from the Sun, and an Earth-NEA rendezvous (to near-Earth asteroid 1996FG3), where a large orbital eccentricity change is required. The investigated solar sails have realistic near-term characteristic accelerations between 0.1 and 0.2mm/s2. Our results show that a SPT is not superior to the flat solar sail unless very idealistic assumptions are made. KW - Interplanetary flight Y1 - 2009 SN - 978-161567908-9 N1 - 60th International Astronautical Congress 2009, IAC 2009; Daejeon; South Korea; 12 October 2009 through 16 October 2009 VL - Vol. 8 SP - 6838 EP - 6851 PB - Elsevier CY - Amsterdam ER - TY - CHAP A1 - Götten, Falk A1 - Finger, Felix A1 - Havermann, Marc A1 - Braun, Carsten A1 - Marino, Matthew A1 - Bil, Cees T1 - Full Configuration Drag Estimation of Small-to-Medium Range UAVs and its Impact on Initial Sizing Optimization T2 - Deutscher Luft- und Raumfahrtkongress - DLRK 2020 Y1 - 2020 ER - TY - CHAP A1 - Bergmann, Ole A1 - Götten, Falk A1 - Braun, Carsten A1 - Janser, Frank T1 - Comparison and evaluation of blade element methods against RANS simulations and test data T2 - CEAS Aeronautical Journal N2 - This paper compares several blade element theory (BET) method-based propeller simulation tools, including an evaluation against static propeller ground tests and high-fidelity Reynolds-Average Navier Stokes (RANS) simulations. Two proprietary propeller geometries for paraglider applications are analysed in static and flight conditions. The RANS simulations are validated with the static test data and used as a reference for comparing the BET in flight conditions. The comparison includes the analysis of varying 2D aerodynamic airfoil parameters and different induced velocity calculation methods. The evaluation of the BET propeller simulation tools shows the strength of the BET tools compared to RANS simulations. The RANS simulations underpredict static experimental data within 10% relative error, while appropriate BET tools overpredict the RANS results by 15–20% relative error. A variation in 2D aerodynamic data depicts the need for highly accurate 2D data for accurate BET results. The nonlinear BET coupled with XFOIL for the 2D aerodynamic data matches best with RANS in static operation and flight conditions. The novel BET tool PropCODE combines both approaches and offers further correction models for highly accurate static and flight condition results. KW - BET KW - CFD propeller simulation KW - Propeller aerodynamics KW - Actuator disk modelling KW - Propeller performance Y1 - 2022 U6 - http://dx.doi.org/10.1007/s13272-022-00579-1 SN - 1869-5590 (Online) SN - 1869-5582 (Print) N1 - Corresponding author: Ole Bergmann VL - 13 SP - 535 EP - 557 PB - Springer CY - Wien ER - TY - CHAP A1 - Geiben, Benedikt A1 - Götten, Falk A1 - Havermann, Marc T1 - Aerodynamic analysis of a winged sub-orbital spaceplane T2 - Deutscher Luft- und Raumfahrtkongress - DLRK 2020 Y1 - 2020 ER - TY - CHAP A1 - Hippe, Jonas A1 - Finger, Felix A1 - Götten, Falk A1 - Braun, Carsten T1 - Propulsion System Qualification of a 25 kg VTOL-UAV: Hover Performance of Single and Coaxial Rotors and Wind-Tunnel Experiments on Cruise Propellers T2 - Deutscher Luft- und Raumfahrtkongress - DLRK 2020 Y1 - 2020 ER - TY - CHAP A1 - Finger, Felix A1 - Götten, Falk A1 - Braun, Carsten A1 - Bil, C. T1 - On Aircraft Design Under the Consideration of Hybrid-Electric Propulsion Systems T2 - APISAT 2018: The Proceedings of the 2018 Asia-Pacific International Symposium on Aerospace Technology (APISAT 2018) N2 - A hybrid-electric propulsion system combines the advantages of fuel-based systems and battery powered systems and offers new design freedom. To take full advantage of this technology, aircraft designers must be aware of its key differences, compared to conventional, carbon-fuel based, propulsion systems. This paper gives an overview of the challenges and potential benefits associated with the design of aircraft that use hybrid-electric propulsion systems. It offers an introduction of the most popular hybrid-electric propulsion architectures and critically assess them against the conventional and fully electric propulsion configurations. The effects on operational aspects and design aspects are covered. Special consideration is given to the application of hybrid-electric propulsion technology to both unmanned and vertical take-off and landing aircraft. The authors conclude that electric propulsion technology has the potential to revolutionize aircraft design. However, new and innovative methods must be researched, to realize the full benefit of the technology. KW - Hybrid-electric aircraft KW - Aircraft design KW - Design rules KW - Green aircraft Y1 - 2019 SN - 978-981-13-3305-7 U6 - http://dx.doi.org/10.1007/978-981-13-3305-7_99 N1 - APISAT 2018 - Asia-Pacific International Symposium on Aerospace Technology. 16-18 October 2018. Chengdu, China. Lecture Notes in Electrical Engineering (LNEE, volume 459) SP - 1261 EP - 1272 PB - Springer CY - Singapore ER - TY - CHAP A1 - Götten, Falk A1 - Finger, Felix A1 - Braun, Carsten A1 - Havermann, Marc A1 - Bil, C. A1 - Gomez, F. T1 - Empirical Correlations for Geometry Build-Up of Fixed Wing Unmanned Air Vehicles T2 - APISAT 2018: The Proceedings of the 2018 Asia-Pacific International Symposium on Aerospace Technology (APISAT 2018) N2 - The results of a statistical investigation of 42 fixed-wing, small to medium sized (20 kg−1000 kg) reconnaissance unmanned air vehicles (UAVs) are presented. Regression analyses are used to identify correlations of the most relevant geometry dimensions with the UAV’s maximum take-off mass. The findings allow an empirical based geometry-build up for a complete unmanned aircraft by referring to its take-off mass only. This provides a bridge between very early design stages (initial sizing) and the later determination of shapes and dimensions. The correlations might be integrated into a UAV sizing environment and allow designers to implement more sophisticated drag and weight estimation methods in this process. Additional information on correlation factors for a rough drag estimation methodology indicate how this technique can significantly enhance the accuracy of early design iterations. KW - Unmanned Air Vehicle KW - Geometry KW - Correlations KW - Statistics KW - Drag Y1 - 2019 SN - 978-981-13-3305-7 U6 - http://dx.doi.org/10.1007/978-981-13-3305-7_109 N1 - APISAT 2018 - Asia-Pacific International Symposium on Aerospace Technology. 16-18 October 2018. Chengdu, China. Lecture Notes in Electrical Engineering (LNEE, volume 459) SP - 1365 EP - 1381 PB - Springer CY - Singapore ER - TY - CHAP A1 - Thoma, Andreas A1 - Fisher, Alex A1 - Braun, Carsten T1 - Improving the px4 avoid algorithm by bio-inspired flight strategies T2 - DLRK2020 - „Luft- und Raumfahrt – Verantwortung in allen Dimensionen“ Y1 - 2020 N1 - Deutscher Luft- und Raumfahrtkongress 2020, 1. bis 3. September 2020 – Online, „Luft- und Raumfahrt – Verantwortung in allen Dimensionen“ ER - TY - CHAP A1 - Englhard, Markus A1 - Weber, Tobias A1 - Arent, Jan-Christoph T1 - Efficiency enhancement for CFRP-Prepregautoclave manufacturing by means of simulation-assisted loading optimization T2 - Proceedings of SAMPE Europe Conference 2021 N2 - A new method for improved autoclave loading within the restrictive framework of helicopter manufacturing is proposed. It is derived from experimental and numerical studies of the curing process and aims at optimizing tooling positions in the autoclave for fast and homogeneous heat-up. The mold positioning is based on two sets of information. The thermal properties of the molds, which can be determined via semi-empirical thermal simulation. The second information is a previously determined distribution of heat transfer coefficients inside the autoclave. Finally, an experimental proof of concept is performed to show a cycle time reduction of up to 31% using the proposed methodology. Y1 - 2021 ER - TY - CHAP A1 - Haugg, Albert Thomas A1 - Kreyer, Jörg A1 - Kemper, Hans A1 - Hatesuer, Katerina A1 - Esch, Thomas T1 - Heat exchanger for ORC. adaptability and optimisation potentials T2 - IIR International Rankine 2020 Conference N2 - The recovery of waste heat requires heat exchangers to extract it from a liquid or gaseous medium into another working medium, a refrigerant. In Organic Rankine Cycles (ORC) on Combustion Engines there are two major heat sources, the exhaust gas and the water/glycol fluid from the engine’s cooling circuit. A heat exchanger design must be adapted to the different requirements and conditions resulting from the heat sources, fluids, system configurations, geometric restrictions, and etcetera. The Stacked Shell Cooler (SSC) is a new and very specific design of a plate heat exchanger, created by AKG, which allows with a maximum degree of freedom the optimization of heat exchange rate and the reduction of the related pressure drop. This optimization in heat exchanger design for ORC systems is even more important, because it reduces the energy consumption of the system and therefore maximizes the increase in overall efficiency of the engine. Y1 - 2020 U6 - http://dx.doi.org/10.18462/iir.rankine.2020.1224 N1 - Conference: IIR International Rankine 2020 Conference - Heating, Cooling, Power Generation. Glasgow, 2020. ER - TY - CHAP A1 - Hoeveler, Bastian A1 - Janser, Frank T1 - The aerodynamically optimized design of a fan-in-wing duct T2 - Applied Aerodynamics Research Conference 2016, Bristol, GB, Jul 19-21, 2016 Y1 - 2016 SN - 1-85768-371-4 N1 - G1-3-paper.pdf SP - 1 EP - 10 ER - TY - CHAP A1 - Grundmann, Jan Thimo A1 - Bauer, Wlademar A1 - Borchers, Kai A1 - Dumont, Etienne A1 - Grimm, Christian D. A1 - Ho, Tra-Mi A1 - Jahnke, Rico A1 - Koch, Aaron D. A1 - Lange, Caroline A1 - Maiwald, Volker A1 - Meß, Jan-Gerd A1 - Mikulz, Eugen A1 - Quantius, Dominik A1 - Reershemius, Siebo A1 - Renger, Thomas A1 - Sasaki, Kaname A1 - Seefeldt, Patric A1 - Spietz, Peter A1 - Spröwitz, Tom A1 - Sznajder, Maciej A1 - Toth, Norbert A1 - Ceriotti, Matteo A1 - McInnes, Colin A1 - Peloni, Alessandro A1 - Biele, Jens A1 - Krause, Christian A1 - Dachwald, Bernd A1 - Hercik, David A1 - Lichtenheldt, Roy A1 - Wolff, Friederike A1 - Koncz, Alexander A1 - Pelivan, Ivanka A1 - Schmitz, Nicole A1 - Boden, Ralf A1 - Riemann, Johannes A1 - Seboldt, Wolfgang A1 - Wejmo, Elisabet A1 - Ziach, Christian A1 - Mikschl, Tobias A1 - Montenegro, Sergio A1 - Ruffer, Michael A1 - Cordero, Federico A1 - Tardivel, Simon T1 - Solar sails for planetary defense & high-energy missions T2 - IEEE Aerospace Conference Proceedings N2 - 20 years after the successful ground deployment test of a (20 m) 2 solar sail at DLR Cologne, and in the light of the upcoming U.S. NEAscout mission, we provide an overview of the progress made since in our mission and hardware design studies as well as the hardware built in the course of our solar sail technology development. We outline the most likely and most efficient routes to develop solar sails for useful missions in science and applications, based on our developed `now-term' and near-term hardware as well as the many practical and managerial lessons learned from the DLR-ESTEC Gossamer Roadmap. Mission types directly applicable to planetary defense include single and Multiple NEA Rendezvous ((M)NR) for precursor, monitoring and follow-up scenarios as well as sail-propelled head-on retrograde kinetic impactors (RKI) for mitigation. Other mission types such as the Displaced L1 (DL1) space weather advance warning and monitoring or Solar Polar Orbiter (SPO) types demonstrate the capability of near-term solar sails to achieve asteroid rendezvous in any kind of orbit, from Earth-coorbital to extremely inclined and even retrograde orbits. Some of these mission types such as SPO, (M)NR and RKI include separable payloads. For one-way access to the asteroid surface, nanolanders like MASCOT are an ideal match for solar sails in micro-spacecraft format, i.e. in launch configurations compatible with ESPA and ASAP secondary payload platforms. Larger landers similar to the JAXA-DLR study of a Jupiter Trojan asteroid lander for the OKEANOS mission can shuttle from the sail to the asteroids visited and enable multiple NEA sample-return missions. The high impact velocities and re-try capability achieved by the RKI mission type on a final orbit identical to the target asteroid's but retrograde to its motion enables small spacecraft size impactors to carry sufficient kinetic energy for deflection. Y1 - 2019 U6 - http://dx.doi.org/10.1109/AERO.2019.8741900 N1 - AERO 2019; Big Sky; United States; 2 March 2019 through 9 March 2019 SP - 1 EP - 21 ER - TY - CHAP A1 - Finger, Felix A1 - de Vries, Reynard A1 - Vos, Roelof A1 - Braun, Carsten A1 - Bil, Cees T1 - A comparison of hybrid-electric aircraft sizing methods T2 - AIAA Scitech 2020 Forum Y1 - 2020 U6 - http://dx.doi.org/10.2514/6.2020-1006 N1 - AIAA Scitech 2020 Forum, Driving aerospace solutions for global challenges, Orlando, 06. - 10. January 2020 ER - TY - CHAP A1 - Kreyer, Jörg A1 - Müller, Marvin A1 - Esch, Thomas T1 - A Map-Based Model for the Determination of Fuel Consumption for Internal Combustion Engines as a Function of Flight Altitude T2 - Deutscher Luft- und Raumfahrtkongress 2019, „Luft- und Raumfahrt – technologische Brücke in die Zukunft“, Darmstadt, 30. September bis 2. Oktober 2019 Y1 - 2020 U6 - http://dx.doi.org/10.25967/490162 PB - Deutsche Gesellschaft für Luft- und Raumfahrt - Lilienthal-Oberth e.V CY - Bonn ER - TY - CHAP A1 - Finger, Felix A1 - Götten, Falk A1 - Braun, Carsten A1 - Bil, Cees T1 - Cost Estimation Methods for Hybrid-Electric General Aviation Aircraft T2 - Asia Pacific International Symposium on Aerospace Technology. APISAT 2019 Y1 - 2019 SP - 1 EP - 13 ER - TY - CHAP A1 - Finger, Felix A1 - Braun, Carsten A1 - Bil, Cees T1 - Comparative assessment of parallel-hybrid-electric propulsion systems for four different aircraft T2 - AIAA SciTech Forum 2020, 06.01.2020 - 10.01.2020, Orlando Y1 - 2020 U6 - http://dx.doi.org/10.2514/6.2020-1502 ER - TY - CHAP A1 - Götten, Falk A1 - Finger, Felix A1 - Marino, Matthew A1 - Bil, Cees A1 - Havermann, Marc A1 - Braun, Carsten T1 - A review of guidelines and best practices for subsonic aerodynamic simulations using RANS CFD T2 - Asia-Pacific International Symposium on Aerospace Technology (APISAT), At Gold Coast, Australia, 04. - 06. Dezember 2019 Y1 - 2019 SN - 978-1-925627-40-4 ER - TY - CHAP A1 - Finger, Felix A1 - Khalsa, R. A1 - Kreyer, Jörg A1 - Mayntz, Joscha A1 - Braun, Carsten A1 - Dahmann, Peter A1 - Esch, Thomas A1 - Kemper, Hans A1 - Schmitz, O. A1 - Bragard, Michael T1 - An approach to propulsion system modelling for the conceptual design of hybrid-electric general aviation aircraft T2 - Deutscher Luft- und Raumfahrtkongress 2019, 30.9.-2.10.2019, Darmstadt N2 - In this paper, an approach to propulsion system modelling for hybrid-electric general aviation aircraft is presented. Because the focus is on general aviation aircraft, only combinations of electric motors and reciprocating combustion engines are explored. Gas turbine hybrids will not be considered. The level of the component's models is appropriate for the conceptual design stage. They are simple and adaptable, so that a wide range of designs with morphologically different propulsive system architectures can be quickly compared. Modelling strategies for both mass and efficiency of each part of the propulsion system (engine, motor, battery and propeller) will be presented. Y1 - 2019 ER - TY - CHAP A1 - Quitter, Julius A1 - Marino, Matthew A1 - Bauschat, J.-Michael T1 - Highly Non-Planar Aircraft Configurations: Estimation of Flight Mechanical Derivatives Using Low-Order Methods T2 - Deutscher Luft- und Raumfahrtkongress 2019, DLRK 2019. Darmstadt, Germany Y1 - 2019 ER - TY - CHAP A1 - Funke, Harald A1 - Beckmann, Nils A1 - Abanteriba, Sylvester T1 - A comparison of complex chemistry mechanisms for hydrogen methane blends based on the Sandia / Sydney Bluff-Body Flame HM1 T2 - Proceedings of the Eleventh Asia‐Pacific Conference on Combustion (ASPACC 2017), New South Wales, Australia, 10-14 December 2017 Y1 - 2017 SN - 978-1-5108-5646-2 SP - 262 EP - 265 ER - TY - CHAP A1 - Funke, Harald A1 - Beckmann, Nils A1 - Abanteriba, Sylvester T1 - Development and Testing of a FuelFlex Dry-Low-NOx Micromix Combustor for Industrial Gas Turbine Applications With Variable Hydrogen Methane Mixtures T2 - ASME Turbo Expo 2019: Turbomachinery Technical Conference and Exposition. June 17–21, 2019 Phoenix, Arizona, USA. Volume 4A: Combustion, Fuels, and Emissions Y1 - 2019 SN - 978-0-7918-5861-5 U6 - http://dx.doi.org/10.1115/GT2019-90095 ER - TY - CHAP A1 - Horikawa, Atsushi A1 - Okada, Kunio A1 - Uto, Takahiro A1 - Uchiyama, Yuta A1 - Wirsum, Manfred A1 - Funke, Harald A1 - Kusterer, Karsten T1 - Application of Low NOx Micro-mix Hydrogen Combustion to 2MW Class Industrial Gas Turbine Combustor T2 - Proceedings of International Gas Turbine Congress 2019 Tokyo, November 17-22, 2019, Tokyo, Japan Y1 - 2019 SN - 978-4-89111-010-9 N1 - IGTC-2019-129 SP - 1 EP - 6 ER - TY - CHAP A1 - Funke, Harald A1 - Beckmann, Nils T1 - Flexible Fuel Operation of a Dry-Low-Nox Micromix Combustor with Variable Hydrogen Methane Mixtures T2 - Proceedings of International Gas Turbine Congress 2019 Tokyo, November 17-22, 2019, Tokyo, Japan Y1 - 2019 SN - 978-4-89111-010-9 N1 - IGTC-2019-013 ER - TY - CHAP A1 - Striegan, Constantin J. D. A1 - Struth, Benjamin A1 - Dickhoff, Jens A1 - Kusterer, Karsten A1 - Funke, Harald A1 - Bohn, Dieter T1 - Numerical Simulations of the Micromix DLN Hydrogen Combustion Technology with LES and Comparison to Results of RANS and Experimental Data T2 - Proceedings of International Gas Turbine Congress 2019 Tokyo, November 17-22, 2019, Tokyo, Japan. Y1 - 2019 SN - 978-4-89111-010-9 N1 - IGCT-2019-147 SP - 1 EP - 9 ER - TY - CHAP A1 - Otten, D. A1 - Schmidt, M. A1 - Weber, Tobias T1 - Advances in Determination of Material Parameters for Functional Simulations Based on Process Simulations T2 - SAMPE Europe Conference 16 Liege Y1 - 2016 SN - 978-1-5108-3800-0 SP - 570 EP - 577 ER - TY - CHAP A1 - Weber, Tobias A1 - Tellis, Jane J. A1 - Duhovic, Miro T1 - Characterization of tool-part-interaction an interlaminar friction for manufacturing process simulation T2 - ECCM 17, 17th European Conference on Composite Materials, München, DE, Jun 26-30, 2016 Y1 - 2016 SN - 978-3-00-053387-7 SP - 1 EP - 7 ER - TY - CHAP A1 - Ayed, Anis Haj A1 - Striegan, Constantin J. D. A1 - Kusterer, Karsten A1 - Funke, Harald A1 - Kazari, M. A1 - Horikawa, Atsushi A1 - Okada, Kunio T1 - Automated design space exploration of the hydrogen fueled "Micromix" combustor technology N2 - Combined with the use of renewable energy sources for its production, Hydrogen represents a possible alternative gas turbine fuel for future low emission power generation. Due to its different physical properties compared to other fuels such as natural gas, well established gas turbine combustion systems cannot be directly applied for Dry Low NOx (DLN) Hydrogen combustion. This makes the development of new combustion technologies an essential and challenging task for the future of hydrogen fueled gas turbines. The newly developed and successfully tested “DLN Micromix” combustion technology offers a great potential to burn hydrogen in gas turbines at very low NOx emissions. Aiming to further develop an existing burner design in terms of increased energy density, a redesign is required in order to stabilise the flames at higher mass flows and to maintain low emission levels. For this purpose, a systematic design exploration has been carried out with the support of CFD and optimisation tools to identify the interactions of geometrical and design parameters on the combustor performance. Aerodynamic effects as well as flame and emission formation are observed and understood time- and cost-efficiently. Correlations between single geometric values, the pressure drop of the burner and NOx production have been identified as a result. This numeric methodology helps to reduce the effort of manufacturing and testing to few designs for single validation campaigns, in order to confirm the flame stability and NOx emissions in a wider operating condition field. Y1 - 2017 N1 - Proceedings of the 1st Global Power and Propulsion Forum GPPF 2017, Jan 16-18, 2017, Zurich, Switzerland SP - 1 EP - 8 ER - TY - CHAP A1 - Funke, Harald A1 - Beckmann, Nils A1 - Keinz, Jan A1 - Horikawa, Atsushi T1 - 30 years of dry low NOx micromix combustor research for hydrogen-rich fuels: an overview of past and present activities T2 - Proceedings of the ASME Turbo Expo 2020: Turbomachinery Technical Conference and Exposition, September 21–25, 2020, Virtual, Online. Vol.: 4B: Combustion, Fuels, and Emissions KW - Micromix KW - Hydrogen KW - Fuel-flexibility KW - NOx KW - Emissions Y1 - 2021 SN - 978-0-7918-8413-3 U6 - http://dx.doi.org/10.1115/GT2020-16328 N1 - Paper No. GT2020-16328, V04BT04A069 PB - American Society of Mechanical Engineers (ASME) ER - TY - CHAP A1 - Bergmann, Kevin A1 - Gräbener, Josefine A1 - Wild, Dominik A1 - Ulfers, H. A1 - Czupalla, Markus T1 - Study on thermal stabilization of a GEO-stationary telescope baffling system by integral application of phase change material T2 - International Conference on Environmental Systems N2 - The utilization of phase change material (PCM) for latent heat storage and thermal control of spacecraft has been demonstrated in the past in few missions only. One limiting factor was the fact that all concepts developed so far envisioned the PCM to be applied as an additional capacitor, encapsulated in its own housing, leading to mass, efficiency and accommodation challenges. Recently, the application of PCM within the scan cavity of a GEOS type satellite has been suggested, in order to tackle thermal issues due to direct sun intrusion (Choi, M., 2014). However, the application of PCM in such complex mechanical structures is extremely challenging. A new concept to tackle this issue is currently under development at the FH Aachen University of Applied Sciences. The concept "Infused Thermal Solutions (ITS)" is based on the idea to 3D print metallic structures in their regular functional shape, but double walled with internal lattice support structures, allowing the infusion of a PCM layer directly into the voids and eliminating the need for additional parts and interfaces. Together with OHB System, FH Aachen theoretically studied the application of this technology to the Meteosat Third Generation (MTG) Infra-Red Sounder (IRS) instrument. The study focuses on the scan cavity and entrance baffling assembly (EBA) of the IRS. It consists of thermal analyses, 3D-redesign and bread boarding of a scaled and PCM infused EBA version. In the thermal design of the alternative EBA, PCM was applied directly into the EBA, simulating the worst hot case sun intrusion of the mission. By applying 4kg of PCM (to a 60kg baffle) the EBA temperature excursions during sun intrusion were limited from 140K to 30K, leading to a significant thermo-opto-elastic performance gain. This paper introduces the ITS concept development status. Y1 - 2019 N1 - 49th International Conference on Environmental Systems, 7-11 July 2019, Boston, Massachusetts ; ICES-2019-72 SP - 1 EP - 14 ER - TY - CHAP A1 - Adams, Moritz A1 - Losekamm, Martin J. A1 - Czupalla, Markus T1 - Development of the Thermal Control System for the RadMap Telescope Experiment on the International Space Station T2 - International Conference on Environmental Systems Y1 - 2020 N1 - The proceedings for the 2020 International Conference on Environmental Systems, ICES-2020-179 SP - 1 EP - 10 ER - TY - CHAP A1 - Thoma, Andreas A1 - Fisher, Alex A1 - Bertrand, Olivier A1 - Braun, Carsten ED - Vouloutsi, Vasiliki ED - Mura, Anna ED - Tauber, Falk ED - Speck, Thomas ED - Prescott, Tony J. ED - Verschure, Paul F. M. J. T1 - Evaluation of possible flight strategies for close object evasion from bumblebee experiments T2 - Living Machines 2020: Biomimetic and Biohybrid Systems KW - Obstacle avoidance KW - Bumblebees KW - Flight control KW - UAV KW - MAV Y1 - 2020 SN - 978-3-030-64312-6 U6 - http://dx.doi.org/10.1007/978-3-030-64313-3_34 N1 - 9th International Conference, Living Machines 2020, Freiburg, Germany, July 28–30, 2020, Proceedings SP - 354 EP - 365 PB - Springer CY - Cham ER - TY - CHAP A1 - Ohndorf, Andreas A1 - Dachwald, Bernd A1 - Seboldt, Wolfgang A1 - Schartner, Karl-Heinz T1 - Flight times to the heliopause using a combination of solar and radioisotope electric propulsion T2 - 32nd International Electric Propulsion Conference N2 - We investigate the interplanetary flight of a low-thrust space probe to the heliopause,located at a distance of about 200 AU from the Sun. Our goal was to reach this distance within the 25 years postulated by ESA for such a mission (which is less ambitious than the 15-year goal set by NASA). Contrary to solar sail concepts and combinations of allistic and electrically propelled flight legs, we have investigated whether the set flight time limit could also be kept with a combination of solar-electric propulsion and a second, RTG-powered upper stage. The used ion engine type was the RIT-22 for the first stage and the RIT-10 for the second stage. Trajectory optimization was carried out with the low-thrust optimization program InTrance, which implements the method of Evolutionary Neurocontrol,using Artificial Neural Networks for spacecraft steering and Evolutionary Algorithms to optimize the Neural Networks’ parameter set. Based on a parameter space study, in which the number of thrust units, the unit’s specific impulse, and the relative size of the solar power generator were varied, we have chosen one configuration as reference. The transfer time of this reference configuration was 29.6 years and the fastest one, which is technically more challenging, still required 28.3 years. As all flight times of this parameter study were longer than 25 years, we further shortened the transfer time by applying a launcher-provided hyperbolic excess energy up to 49 km2/s2. The resulting minimal flight time for the reference configuration was then 27.8 years. The following, more precise optimization to a launch with the European Ariane 5 ECA rocket reduced the transfer time to 27.5 years. This is the fastest mission design of our study that is flexible enough to allow a launch every year. The inclusion of a fly-by at Jupiter finally resulted in a flight time of 23.8 years,which is below the set transfer-time limit. However, compared to the 27.5-year transfer,this mission design has a significantly reduced launch window and mission flexibility if the escape direction is restricted to the heliosphere’s “nose". KW - low-thrust trajectory optimization KW - heliosphere KW - ion propulsion Y1 - 2011 N1 - IEPC-2011-051 32nd International Electric Propulsion Conference,September 11–15, 2011 Wiesbaden, Germany SP - 1 EP - 12 ER - TY - CHAP A1 - Borggräfe, Andreas A1 - Dachwald, Bernd T1 - Mission performance evaluation for solar sails using a refined SRP force model with variable optical coefficients T2 - 2nd International Symposium on Solar Sailing N2 - Solar sails provide ignificant advantages over other low-thrust propulsion systems because they produce thrust by the momentum exchange from solar radiation pressure (SRP) and thus do not consume any propellant.The force exerted on a very thin sail foil basically depends on the light incidence angle. Several analytical SRP force models that describe the SRP force acting on the sail have been established since the 1970s. All the widely used models use constant optical force coefficients of the reflecting sail material. In 2006,MENGALI et al. proposed a refined SRP force model that takes into account the dependancy of the force coefficients on the light incident angle,the sail’s distance from the sun (and thus the sail emperature) and the surface roughness of the sail material [1]. In this paper, the refined SRP force model is compared to the previous ones in order to identify the potential impact of the new model on the predicted capabilities of solar sails in performing low-cost interplanetary space missions. All force models have been implemented within InTrance, a global low-thrust trajectory optimization software utilizing evolutionary neurocontrol [2]. Two interplanetary rendezvous missions, to Mercury and the near-Earth asteroid 1996FG3, are investigated. Two solar sail performances in terms of characteristic acceleration are examined for both scenarios, 0.2 mm/s2 and 0.5 mm/s2, termed “low” and “medium” sail performance. In case of the refined SRP model, three different values of surface roughness are chosen, h = 0 nm, 10 nm and 25 nm. The results show that the refined SRP force model yields shorter transfer times than the standard model. Y1 - 2010 N1 - 2nd International Symposium on Solar Sailing, ISSS 2010, 2010-07-20 - 2010-07-22. New York City College of Technology of the City University of New York, USA SP - 1 EP - 6 ER - TY - CHAP A1 - Kroniger, Daniel A1 - Horikawa, Atsushi A1 - Funke, Harald A1 - Pfäffle, Franziska A1 - Kishimoto, Tsuyoshi A1 - Okada, Koichi T1 - Experimental and numerical investigation on the effect of pressure on micromix hydrogen combustion T2 - ASME Turbo Expo 2021: Turbomachinery Technical Conference and Exposition // Volume 3A: Combustion, Fuels, and Emissions N2 - The micromix (MMX) combustion concept is a DLN gas turbine combustion technology designed for high hydrogen content fuels. Multiple non-premixed miniaturized flames based on jet in cross-flow (JICF) are inherently safe against flashback and ensure a stable operation in various operative conditions. The objective of this paper is to investigate the influence of pressure on the micromix flame with focus on the flame initiation point and the NOx emissions. A numerical model based on a steady RANS approach and the Complex Chemistry model with relevant reactions of the GRI 3.0 mechanism is used to predict the reactive flow and NOx emissions at various pressure conditions. Regarding the turbulence-chemical interaction, the Laminar Flame Concept (LFC) and the Eddy Dissipation Concept (EDC) are compared. The numerical results are validated against experimental results that have been acquired at a high pressure test facility for industrial can-type gas turbine combustors with regard to flame initiation and NOx emissions. The numerical approach is adequate to predict the flame initiation point and NOx emission trends. Interestingly, the flame shifts its initiation point during the pressure increase in upstream direction, whereby the flame attachment shifts from anchoring behind a downstream located bluff body towards anchoring directly at the hydrogen jet. The LFC predicts this change and the NOx emissions more accurately than the EDC. The resulting NOx correlation regarding the pressure is similar to a non-premixed type combustion configuration. KW - NOx emissions KW - hydrogen KW - combustor KW - gas turbine Y1 - 2021 U6 - http://dx.doi.org/10.1115/GT2021-58926 N1 - ASME Turbo Expo 2021: Turbomachinery Technical Conference and Exposition. June 7–11, 2021. Virtual, Online. Paper No: GT2021-58926, V03AT04A025 ER - TY - CHAP A1 - Dachwald, Bernd A1 - Kahle, Ralph A1 - Wie, Bong T1 - Head-on impact deflection of NEAs: a case study for 99942 Apophis T2 - Planetary Defense Conference 2007 N2 - Near-Earth asteroid (NEA) 99942 Apophis provides a typical example for the evolution of asteroid orbits that lead to Earth-impacts after a close Earth-encounter that results in a resonant return. Apophis will have a close Earth-encounter in 2029 with potential very close subsequent Earth-encounters (or even an impact) in 2036 or later, depending on whether it passes through one of several less than 1 km-sized gravitational keyholes during its 2029-encounter. A pre-2029 kinetic impact is a very favorable option to nudge the asteroid out of a keyhole. The highest impact velocity and thus deflection can be achieved from a trajectory that is retrograde to Apophis orbit. With a chemical or electric propulsion system, however, many gravity assists and thus a long time is required to achieve this. We show in this paper that the solar sail might be the better propulsion system for such a mission: a solar sail Kinetic Energy Impactor (KEI) spacecraft could impact Apophis from a retrograde trajectory with a very high relative velocity (75-80 km/s) during one of its perihelion passages. The spacecraft consists of a 160 m × 160 m, 168 kg solar sail assembly and a 150 kg impactor. Although conventional spacecraft can also achieve the required minimum deflection of 1 km for this approx. 320 m-sized object from a prograde trajectory, our solar sail KEI concept also allows the deflection of larger objects. For a launch in 2020, we also show that, even after Apophis has flown through one of the gravitational keyholes in 2029, the solar sail KEI concept is still feasible to prevent Apophis from impacting the Earth, but many KEIs would be required for consecutive impacts to increase the total Earth-miss distance to a safe value Y1 - 2007 N1 - Planetary Defense Conference 2007, Wahington D.C., USA, 05-08 March 2007 SP - 1 EP - 12 ER - TY - CHAP A1 - Grundmann, Jan Thimo A1 - Boden, Ralf A1 - Ceriotti, Matteo A1 - Dachwald, Bernd A1 - Dumont, Etienne A1 - Grimm, Christian D. A1 - Lange, Caroline A1 - Lichtenheldt, Roy A1 - Pelivan, Ivanka A1 - Peloni, Alessandro A1 - Riemann, Johannes A1 - Spröwitz, Tom A1 - Tardivel, Simon T1 - Soil to sail-asteroid landers on near-term sailcraft as an evolution of the GOSSAMER small spacecraft solar sail concept for in-situ characterization T2 - 5th IAA Planetary Defense Conference KW - multiple NEA rendezvous KW - solar sail KW - GOSSAMER-1 KW - MASCOT KW - asteroid sample return Y1 - 2017 N1 - 5th IAA Planetary Defense Conference – PDC 2017 15-19 May 2017, Tokyo, Japan ER - TY - CHAP A1 - Seboldt, Wolfgang A1 - Dachwald, Bernd T1 - Solar sails for near-term advanced scientific deep space missions T2 - Proceedings of the 8th International Workshop on Combustion and Propulsion N2 - Solar sails are propelled in space by reflecting solar photons off large mirroring surfaces, thereby transforming the momentum of the photons into a propulsive force. This innovative concept for low-thrust space propulsion works without any propellant and thus provides a wide range of opportunities for highenergy low-cost missions. Offering an efficient way of propulsion, solar sailcraft could close a gap in transportation options for highly demanding exploration missions within our solar system and even beyond. On December 17th, 1999, a significant step was made towards the realization of this technology: a lightweight solar sail structure with an area of 20 m × 20 m was successfully deployed on ground in a large facility at the German Aerospace Center (DLR) at Cologne. The deployment from a package of 60 cm × 60 cm × 65 cm with a total mass of less than 35 kg was achieved using four extremely light-weight carbon fiber reinforced plastics (CFRP) booms with a specific mass of 100 g/m. The paper briefly reviews the basic principles of solar sails as well as the technical concept and its realization in the ground demonstration experiment, performed in close cooperation between DLR and ESA. Next possible steps are outlined. They could comprise the in-orbit demonstration of the sail deployment on the upper stage of a low-cost rocket and the verification of the propulsion concept by an autonomous and free flying solar sail in the frame of a scientific mission. It is expected that the present design could be extended to sail sizes of about (40 m)2 up to even (70 m)2 without significant mass penalty. With these areas, the maximum achievable thrust at 1 AU would range between 10 and 40 mN – comparable to some electric thrusters. Such prototype sails with a mass between 50 and 150 kg plus a micro-spacecraft of 50 to 250 kg would have a maximum acceleration in the order of 0.1 mm/s2 at 1 AU, corresponding to a maximum ∆V-capability of about 3 km/s per year. Two near/medium-term mission examples to a near-Earth asteroid (NEA) will be discussed: a rendezvous mission and a sample return mission. KW - solar sail KW - low-thrust KW - near-Earth asteroid KW - sample return KW - solar system Y1 - 2003 N1 - Proceedings of the 8th International Workshop on Combustion and Propulsion. Pozzuoli, Italy, 16 - 21 June 2002. ER -