TY - CHAP A1 - Dreschers, Martin ED - Mönning, Rolf-Dieter T1 - §25 Arbeitsrechtliche Probleme im Rahmen der Betriebsfortführung T2 - Betriebsfortführung in Restrukturierung und Insolvenz Y1 - 2023 SN - 978-3-8145-2012-4 (print) SN - 978-3-8145-5888-2 (e-book) U6 - http://dx.doi.org/https://doi.org/10.15375/9783814558882-028 SP - 947 EP - 988 PB - RWS Verlag CY - Köln ER - TY - CHAP A1 - Dreschers, Martin ED - Kübler, Bruno M. ED - Bork, Reinhard ED - Prütting, Hanns T1 - §18 Grenzüberschreitende Eigenverwaltung T2 - HRI II - Handbuch Restrukturierung in der Insolvenz Y1 - 2023 SN - 978-3-8145-2010-0 (print) SN - 978-3-8145-5871-4 (e-book) U6 - http://dx.doi.org/10.15375/9783814558714-028 SP - 524 EP - 556 PB - RWS Verlag CY - Köln ER - TY - JOUR A1 - Cheng, Chi-Tsun A1 - Wollert, Jörg A1 - Chen, Xi A1 - Fapojuwo, Abraham O. T1 - Guest Editorial : Circuits and Systems for Industry X.0 Applications JF - IEEE Journal on Emerging and Selected Topics in Circuits and Systems Y1 - 2023 U6 - http://dx.doi.org/10.1109/JETCAS.2023.3278843 SN - 2156-3357 (Print) SN - 2156-3365 (Online) VL - 13 SP - 457 EP - 460 PB - IEEE CY - New York ET - 2 ER - TY - JOUR A1 - Pfaff, Raphael T1 - Braking distance prediction for vehicle consist in low-speed on-sight operation: a Monte Carlo approach JF - Railway Engineering Science N2 - The first and last mile of a railway journey, in both freight and transit applications, constitutes a high effort and is either non-productive (e.g. in the case of depot operations) or highly inefficient (e.g. in industrial railways). These parts are typically managed on-sight, i.e. with no signalling and train protection systems ensuring the freedom of movement. This is possible due to the rather short braking distances of individual vehicles and shunting consists. The present article analyses the braking behaviour of such shunting units. For this purpose, a dedicated model is developed. It is calibrated on published results of brake tests and validated against a high-definition model for low-speed applications. Based on this model, multiple simulations are executed to obtain a Monte Carlo simulation of the resulting braking distances. Based on the distribution properties and established safety levels, the risk of exceeding certain braking distances is evaluated and maximum braking distances are derived. Together with certain parameters of the system, these can serve in the design and safety assessment of driver assistance systems and automation of these processes. KW - Freight rail KW - Shunting KW - Braking curves KW - Brake set-up KW - Driver assistance system Y1 - 2023 U6 - http://dx.doi.org/10.1007/s40534-023-00303-7 SN - 2662-4753 (eISSN) SN - 2662-4745 (Print) VL - 31 IS - 2 SP - 135 EP - 144 PB - SpringerOpen ER - TY - JOUR A1 - Abbas, Karim A1 - Hedwig, Lukas A1 - Balc, Nicolae A1 - Bremen, Sebastian T1 - Advanced FFF of PEEK: Infill strategies and material characteristics for rapid tooling JF - Polymers N2 - Traditional vulcanization mold manufacturing is complex, costly, and under pressure due to shorter product lifecycles and diverse variations. Additive manufacturing using Fused Filament Fabrication and high-performance polymers like PEEK offer a promising future in this industry. This study assesses the compressive strength of various infill structures (honeycomb, grid, triangle, cubic, and gyroid) when considering two distinct build directions (Z, XY) to enhance PEEK’s economic and resource efficiency in rapid tooling. A comparison with PETG samples shows the behavior of the infill strategies. Additionally, a proof of concept illustrates the application of a PEEK mold in vulcanization. A peak compressive strength of 135.6 MPa was attained in specimens that were 100% solid and subjected to thermal post-treatment. This corresponds to a 20% strength improvement in the Z direction. In terms of time and mechanical properties, the anisotropic grid and isotropic cubic infill have emerged for use in rapid tooling. Furthermore, the study highlights that reducing the layer thickness from 0.15 mm to 0.1 mm can result in a 15% strength increase. The study unveils the successful utilization of a room-temperature FFF-printed PEEK mold in vulcanization injection molding. The parameters and infill strategies identified in this research enable the resource-efficient FFF printing of PEEK without compromising its strength properties. Using PEEK in rapid tooling allows a cost reduction of up to 70% in tool production. KW - polyetheretherketone (PEEK) KW - rapid tooling KW - infill strategy KW - compression behavior KW - additive manufacturing KW - fused filament fabrication Y1 - 2023 U6 - http://dx.doi.org/10.3390/polym15214293 N1 - This article belongs to the Special Issue "Polymer Materials and Design Processes for Additively Manufactured Products" VL - 2023 IS - 15 PB - MDPI CY - Basel ER - TY - JOUR A1 - Luft, Angela A1 - Luft, Nils A1 - Arntz, Kristian T1 - A basic description logic for service-oriented architecture in factory planning and operational control in the age of industry 4.0 JF - Applied Sciences N2 - Manufacturing companies across multiple industries face an increasingly dynamic and unpredictable environment. This development can be seen on both the market and supply side. To respond to these challenges, manufacturing companies must implement smart manufacturing systems and become more flexible and agile. The flexibility in operational planning regarding the scheduling and sequencing of customer orders needs to be increased and new structures must be implemented in manufacturing systems’ fundamental design as they constitute much of the operational flexibility available. To this end, smart and more flexible solutions for production planning and control (PPC) are developed. However, scheduling or sequencing is often only considered isolated in a predefined stable environment. Moreover, their orientation on the fundamental logic of the existing IT solutions and their applicability in a dynamic environment is limited. This paper presents a conceptual model for a task-based description logic that can be applied to factory planning, technology planning, and operational control. By using service-oriented architectures, the goal is to generate smart manufacturing systems. The logic is designed to allow for easy and automated maintenance. It is compatible with the existing resource and process allocation logic across operational and strategic factory and production planning. KW - manufacturing data model KW - production planning and control KW - manufacturing flexibility KW - technology planning KW - SOA KW - service-oriented architectures KW - factory planning Y1 - 2023 U6 - http://dx.doi.org/10.3390/app13137610 N1 - This article belongs to the Special Issue "Smart Industrial System" VL - 2023 IS - 13 PB - MDPI CY - Basel ER - TY - JOUR A1 - Ulmer, Jessica A1 - Braun, Carsten A1 - Cheng, Chi-Tsun A1 - Dowey, Steve A1 - Wollert, Jörg T1 - A human factors-aware assistance system in manufacturing based on gamification and hardware modularisation JF - International Journal of Production Research N2 - Assistance systems have been widely adopted in the manufacturing sector to facilitate various processes and tasks in production environments. However, existing systems are mostly equipped with rigid functional logic and do not provide individual user experiences or adapt to their capabilities. This work integrates human factors in assistance systems by adjusting the hardware and instruction presented to the workers’ cognitive and physical demands. A modular system architecture is designed accordingly, which allows a flexible component exchange according to the user and the work task. Gamification, the use of game elements in non-gaming contexts, has been further adopted in this work to provide level-based instructions and personalised feedback. The developed framework is validated by applying it to a manual workstation for industrial assembly routines. KW - Human factors KW - assistance system KW - gamification KW - adaptive systems KW - manufacturing Y1 - 2023 U6 - http://dx.doi.org/10.1080/00207543.2023.2166140 SN - 0020-7543 (Print) SN - 1366-588X (Online) PB - Taylor & Francis ER - TY - CHAP A1 - Chavez Bermudez, Victor Francisco A1 - Wollert, Jörg T1 - 10BASE-T1L industry 4.0 smart switch for field devices based on IO-Link T2 - 2022 IEEE 18th International Conference on Factory Communication Systems (WFCS) N2 - The recent amendment to the Ethernet physical layer known as the IEEE 802.3cg specification, allows to connect devices up to a distance of one kilometer and delivers a maximum of 60 watts of power over a twisted pair of wires. This new standard, also known as 10BASE-TIL, promises to overcome the limits of current physical layers used for field devices and bring them a step closer to Ethernet-based applications. The main advantage of 10BASE- TIL is that it can deliver power and data over the same line over a long distance, where traditional solutions (e.g., CAN, IO-Link, HART) fall short and cannot match its 10 Mbps bandwidth. Due to its recentness, IOBASE- TIL is still not integrated into field devices and it has been less than two years since silicon manufacturers released the first Ethernet-PHY chips. In this paper, we present a design proposal on how field devices could be integrated into a IOBASE-TIL smart switch that allows plug-and-play connectivity for sensors and actuators and is compliant with the Industry 4.0 vision. Instead of presenting a new field-level protocol for this work, we have decided to adopt the IO-Link specification which already includes a plug-and-play approach with features such as diagnosis and device configuration. The main objective of this work is to explore how field devices could be integrated into 10BASE-TIL Ethernet, its adaption with a well-known protocol, and its integration with Industry 4.0 technologies. KW - 10BASE-T1L KW - Ethernet KW - Field device KW - Sensors KW - IO-Link Y1 - 2022 SN - 978-1-6654-1086-1 SN - 978-1-6654-1087-8 U6 - http://dx.doi.org/10.1109/WFCS53837.2022.9779176 N1 - 2022 IEEE 18th International Conference on Factory Communication Systems (WFCS), 27-29 April 2022, Pavia, Italy- PB - IEEE ER - TY - CHAP A1 - Ulmer, Jessica A1 - Braun, Sebastian A1 - Cheng, Chi-Tsun A1 - Dowey, Steve A1 - Wollert, Jörg T1 - Usage of digital twins for gamification applications in manufacturing T2 - Procedia CIRP N2 - Gamification applications are on the rise in the manufacturing sector to customize working scenarios, offer user-specific feedback, and provide personalized learning offerings. Commonly, different sensors are integrated into work environments to track workers’ actions. Game elements are selected according to the work task and users’ preferences. However, implementing gamified workplaces remains challenging as different data sources must be established, evaluated, and connected. Developers often require information from several areas of the companies to offer meaningful gamification strategies for their employees. Moreover, work environments and the associated support systems are usually not flexible enough to adapt to personal needs. Digital twins are one primary possibility to create a uniform data approach that can provide semantic information to gamification applications. Frequently, several digital twins have to interact with each other to provide information about the workplace, the manufacturing process, and the knowledge of the employees. This research aims to create an overview of existing digital twin approaches for digital support systems and presents a concept to use digital twins for gamified support and training systems. The concept is based upon the Reference Architecture Industry 4.0 (RAMI 4.0) and includes information about the whole life cycle of the assets. It is applied to an existing gamified training system and evaluated in the Industry 4.0 model factory by an example of a handle mounting. KW - Gamification KW - Digital Twin KW - Support System Y1 - 2022 U6 - http://dx.doi.org/10.1016/j.procir.2022.05.044 SN - 2212-8271 N1 - 55th CIRP Conference on Manufacturing Systems VL - 107 SP - 675 EP - 680 PB - Elsevier CY - Amsterdam ER - TY - CHAP A1 - Dannen, Tammo A1 - Schindele, Benedikt A1 - Prümmer, Marcel A1 - Arntz, Kristian A1 - Bergs, Thomas T1 - Methodology for the self-optimizing determination of additive manufacturing process eligibility and optimization potentials in toolmaking T2 - Procedia CIRP N2 - Additive Manufacturing (AM) of metallic workpieces faces a continuously rising technological relevance and market size. Producing complex or highly strained unique workpieces is a significant field of application, making AM highly relevant for tool components. Its successful economic application requires systematic workpiece based decisions and optimizations. Considering geometric and technological requirements as well as the necessary post-processing makes deciding effortful and requires in-depth knowledge. As design is usually adjusted to established manufacturing, associated technological and strategic potentials are often neglected. To embed AM in a future proof industrial environment, software-based self-learning tools are necessary. Integrated into production planning, they enable companies to unlock the potentials of AM efficiently. This paper presents an appropriate methodology for the analysis of process-specific AM-eligibility and optimization potential, added up by concrete optimization proposals. For an integrated workpiece characterization, proven methods are enlarged by tooling-specific figures. The first stage of the approach specifies the model’s initialization. A learning set of tooling components is described using the developed key figure system. Based on this, a set of applicable rules for workpiece-specific result determination is generated through clustering and expert evaluation. Within the following application stage, strategic orientation is quantified and workpieces of interest are described using the developed key figures. Subsequently, the retrieved information is used for automatically generating specific recommendations relying on the generated ruleset of stage one. Finally, actual experiences regarding the recommendations are gathered within stage three. Statistic learning transfers those to the generated ruleset leading to a continuously deepening knowledge base. This process enables a steady improvement in output quality. KW - Additive manufacturing KW - Laser-Powder Bed Fusion KW - L-PBF KW - Binder Jetting KW - Directed Energy Deposition Y1 - 2022 U6 - http://dx.doi.org/10.1016/j.procir.2022.05.188 SN - 2212-8271 N1 - 55th CIRP Conference on Manufacturing Systems VL - 107 SP - 1539 EP - 1544 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Abbas, Karim A1 - Balc, Nicolae A1 - Bremen, Sebastian A1 - Skupin, Marco T1 - Crystallization and aging behavior of polyetheretherketone PEEK within rapid tooling and rubber molding JF - Journal of Manufacturing and Materials Processing N2 - In times of short product life cycles, additive manufacturing and rapid tooling are important methods to make tool development and manufacturing more efficient. High-performance polymers are the key to mold production for prototypes and small series. However, the high temperatures during vulcanization injection molding cause thermal aging and can impair service life. The extent to which the thermal stress over the entire process chain stresses the material and whether it leads to irreversible material aging is evaluated. To this end, a mold made of PEEK is fabricated using fused filament fabrication and examined for its potential application. The mold is heated to 200 ◦C, filled with rubber, and cured. A differential scanning calorimetry analysis of each process step illustrates the crystallization behavior and first indicates the material resistance. It shows distinct cold crystallization regions at a build chamber temperature of 90 ◦C. At an ambient temperature above Tg, crystallization of 30% is achieved, and cold crystallization no longer occurs. Additional tensile tests show a decrease in tensile strength after ten days of thermal aging. The steady decrease in recrystallization temperature indicates degradation of the additives. However, the tensile tests reveal steady embrittlement of the material due to increasing crosslinking. KW - additive manufacturing KW - fused filament fabrication KW - crystallization KW - polyetheretherketone KW - rapid tooling Y1 - 2022 U6 - http://dx.doi.org/10.3390/jmmp6050093 SN - 2504-4494 N1 - The article belongs to the Special Issue Advances in Injection Molding: Process, Materials and Applications VL - 6 IS - 5 SP - 1 EP - 12 PB - MDPI CY - Basel ER - TY - CHAP A1 - Weiss, Christian A1 - Heslenfeld, Jonas A1 - Saewe, Jasmin Kathrin A1 - Bremen, Sebastian A1 - Häfner, Constantin Leon T1 - Investigation on the influence of powder humidity in Laser Powder Bed Fusion (LPBF) T2 - Procedia CIRP N2 - In the Laser Powder Bed Fusion (LPBF) process, parts are built out of metal powder material by exposure of a laser beam. During handling operations of the powder material, several influencing factors can affect the properties of the powder material and therefore directly influence the processability during manufacturing. Contamination by moisture due to handling operations is one of the most critical aspects of powder quality. In order to investigate the influences of powder humidity on LPBF processing, four materials (AlSi10Mg, Ti6Al4V, 316L and IN718) are chosen for this study. The powder material is artificially humidified, subsequently characterized, manufactured into cubic samples in a miniaturized process chamber and analyzed for their relative density. The results indicate that the processability and reproducibility of parts made of AlSi10Mg and Ti6Al4V are susceptible to humidity, while IN718 and 316L are barely influenced. KW - LPBF KW - Additive Manufacturing KW - Powder Material KW - Humidity Y1 - 2022 U6 - http://dx.doi.org/10.1016/j.procir.2022.08.102 SN - 2212-8271 N1 - Teil der Sonderausgabe: 12th CIRP Conference on Photonic Technologies [LANE 2022] VL - 111 SP - 115 EP - 120 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Ulmer, Jessica A1 - Braun, Sebastian A1 - Cheng, Chi-Tsun A1 - Dowey, Steve A1 - Wollert, Jörg T1 - Gamification of virtual reality assembly training: Effects of a combined point and level system on motivation and training results JF - International Journal of Human-Computer Studies N2 - Virtual Reality (VR) offers novel possibilities for remote training regardless of the availability of the actual equipment, the presence of specialists, and the training locations. Research shows that training environments that adapt to users' preferences and performance can promote more effective learning. However, the observed results can hardly be traced back to specific adaptive measures but the whole new training approach. This study analyzes the effects of a combined point and leveling VR-based gamification system on assembly training targeting specific training outcomes and users' motivations. The Gamified-VR-Group with 26 subjects received the gamified training, and the Non-Gamified-VR-Group with 27 subjects received the alternative without gamified elements. Both groups conducted their VR training at least three times before assembling the actual structure. The study found that a level system that gradually increases the difficulty and error probability in VR can significantly lower real-world error rates, self-corrections, and support usages. According to our study, a high error occurrence at the highest training level reduced the Gamified-VR-Group's feeling of competence compared to the Non-Gamified-VR-Group, but at the same time also led to lower error probabilities in real-life. It is concluded that a level system with a variable task difficulty should be combined with carefully balanced positive and negative feedback messages. This way, better learning results, and an improved self-evaluation can be achieved while not causing significant impacts on the participants' feeling of competence. KW - Gamification KW - Virtual reality KW - Assembly KW - User study KW - Level system Y1 - 2022 U6 - http://dx.doi.org/10.1016/j.ijhcs.2022.102854 SN - 1071-5819 VL - 165 IS - Art. No. 102854 PB - Elsevier CY - Amsterdam ER - TY - CHAP A1 - Evans, Benjamin A1 - Braun, Sebastian A1 - Ulmer, Jessica A1 - Wollert, Jörg T1 - AAS implementations - current problems and solutions T2 - 20th International Conference on Mechatronics - Mechatronika (ME) N2 - The fourth industrial revolution presents a multitude of challenges for industries, one of which being the increased flexibility required of manufacturing lines as a result of increased consumer demand for individualised products. One solution to tackle this challenge is the digital twin, more specifically the standardised model of a digital twin also known as the asset administration shell. The standardisation of an industry wide communications tool is a critical step in enabling inter-company operations. This paper discusses the current state of asset administration shells, the frameworks used to host them and their problems that need to be addressed. To tackle these issues, we propose an event-based server capable of drastically reducing response times between assets and asset administration shells and a multi-agent system used for the orchestration and deployment of the shells in the field. KW - Industry 4.0 KW - Multi-agent Systems KW - Digital Twin KW - Asset Administration Shell Y1 - 2022 SN - 978-1-6654-1040-3 U6 - http://dx.doi.org/10.1109/ME54704.2022.9982933 PB - IEEE ER - TY - CHAP A1 - Chavez Bermudez, Victor Francisco A1 - Cruz Castanon, Victor Fernando A1 - Ruchay, Marco A1 - Wollert, Jörg ED - Leipzig, Hochschule für Technik, Wirtschaft und Kultur T1 - Rapid prototyping framework for automation applications based on IO-Link T2 - Tagungsband AALE 2022 N2 - The development of protype applications with sensors and actuators in the automation industry requires tools that are independent of manufacturer, and are flexible enough to be modified or extended for any specific requirements. Currently, developing prototypes with industrial sensors and actuators is not straightforward. First of all, the exchange of information depends on the industrial protocol that these devices have. Second, a specific configuration and installation is done based on the hardware that is used, such as automation controllers or industrial gateways. This means that the development for a specific industrial protocol, highly depends on the hardware and the software that vendors provide. In this work we propose a rapid-prototyping framework based on Arduino to solve this problem. For this project we have focused to work with the IO-Link protocol. The framework consists of an Arduino shield that acts as the physical layer, and a software that implements the IO-Link Master protocol. The main advantage of such framework is that an application with industrial devices can be rapid-prototyped with ease as its vendor independent, open-source and can be ported easily to other Arduino compatible boards. In comparison, a typical approach requires proprietary hardware, is not easy to port to another system and is closed-source. KW - Rapid-prototyping KW - Arduino KW - IO-Link KW - Industrial Communication Y1 - 2022 SN - 978-3-910103-00-9 U6 - http://dx.doi.org/10.33968/2022.28 N1 - 18. AALE-Konferenz, Pforzheim, 09.03.-11.03.2022. CY - Leipzig ER - TY - CHAP A1 - Ulmer, Jessica A1 - Mostafa, Youssef A1 - Wollert, Jörg T1 - Digital Twin Academy: From Zero to Hero through individual learning experiences T2 - Tagungsband AALE 2022 / Herausgegeben von der Hochschule für Technik, Wirtschaft und Kultur Leipzig N2 - Digital twins are seen as one of the key technologies of Industry 4.0. Although many research groups focus on digital twins and create meaningful outputs, the technology has not yet reached a broad application in the industry. The main reasons for this imbalance are the complexity of the topic, the lack of specialists, and the unawareness of the twin opportunities. The project "Digital Twin Academy" aims to overcome these barriers by focusing on three actions: Building a digital twin community for discussion and exchange, offering multi-stage training for various knowledge levels, and implementing realworld use cases for deeper insights and guidance. In this work, we focus on creating a flexible learning platform that allows the user to select a training path adjusted to personal knowledge and needs. Therefore, a mix of basic and advanced modules is created and expanded by individual feedback options. The usage of personas supports the selection of the appropriate modules. KW - Digital Twins KW - Knowledge Transfer KW - Training Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bsz:l189-qucosa2-776097 SN - 978-3-910103-00-9 N1 - Konferenz: 18. AALE-Konferenz. Pforzheim, 09.03.-11.03.2022 This cross-border research was conducted in frame of the Interreg Euregio Meuse-Rhine project Digital Twin Academy, funded by the European Regional Development Fund of the European Union. SP - 1 EP - 9 ER - TY - JOUR A1 - Zabirov, Alexander A1 - Schleser, Markus A1 - Bucherer, Sebastian T1 - Füge- und Dichtkonzept für einen Leichtbauverbrennungsmotor JF - adhäsion KLEBEN & DICHTEN Y1 - 2021 U6 - http://dx.doi.org/10.1007/s35145-021-0531-5 SN - 2192-8681 VL - 65 IS - 11 SP - 12 EP - 19 PB - Springer Nature CY - Cham ER - TY - CHAP A1 - Ulmer, Jessica A1 - Braun, Sebastian A1 - Cheng, Chi-Tsun A1 - Dowey, Steve A1 - Wollert, Jörg T1 - Adapting Augmented Reality Systems to the users’ needs using Gamification and error solving methods T2 - Procedia CIRP N2 - Animations of virtual items in AR support systems are typically predefined and lack interactions with dynamic physical environments. AR applications rarely consider users’ preferences and do not provide customized spontaneous support under unknown situations. This research focuses on developing adaptive, error-tolerant AR systems based on directed acyclic graphs and error resolving strategies. Using this approach, users will have more freedom of choice during AR supported work, which leads to more efficient workflows. Error correction methods based on CAD models and predefined process data create individual support possibilities. The framework is implemented in the Industry 4.0 model factory at FH Aachen. KW - Augmented Reality KW - Adaptive Systems KW - Gamification KW - Error Recovery Y1 - 2021 U6 - http://dx.doi.org/10.1016/j.procir.2021.11.024 SN - 2212-8271 N1 - Part of special issue: 54th CIRP CMS 2021 - Towards Digitalized Manufacturing 4.0 VL - 104 SP - 140 EP - 145 PB - Elsevier CY - Amsterdam ER - TY - BOOK A1 - Feuerriegel, Uwe T1 - Wärmeübertragung mit EXCEL und VBA: Wärmetechnische Berechnungen und Simulationen effektiv durchführen und professionell dokumentieren N2 - Dieses Lehrbuch vermittelt die Grundlagen der Wärmeübertragung sowie den Umgang mit EXCEL-VBA von der Erstellung von Makros bis zu benutzerdefinierten Funktionen. Es legt damit eine Basis für die schnelle und professionelle Durchführung von Berechnungen und Simulationen. Die angeleitete Erstellung von Berechnungsmodulen mit EXCEL und VBA aus allen wichtigen Bereichen der Wärmeübertragung bildet den inhaltlichen Schwerpunkt. Dazu zählen die stationäre Wärmeleitung und der stationäre Wärmedurchgang, die instationäre Wärmeleitung, der Wärmeübergang bei freier und erzwungener Konvektion sowie die Wärmestrahlung und der Wärmeübergang beim Kondensieren und Sieden. Soweit sinnvoll und möglich werden die Stoffwertekorrelationen und die Berechnungsvorschriften aus dem VDI-Wärmeatlas verwendet. Für ausgewählte Anwendungen werden zudem komplexere Auslegungen und Simulationen von Prozessen der Wärmeübertragung sowie von Wärmeübertragern erstellt. Die Zielgruppen: Studierende in Bachelor- und Masterstudiengängen, Praktiker im Engineering KW - Wärmeübertragung KW - Energietechnik KW - Excel und VBA KW - VDI-Wärmeatlas KW - Wärmeübertrager Y1 - 2021 SN - 978-3-658-35905-8 U6 - http://dx.doi.org/10.1007/978-3-658-35906-5 N1 - In der Bereichsbibliothek Eupener Straße unter der Signatur 21 WDW 39 vorhanden PB - Springer Vieweg CY - Wiesbaden ER - TY - CHAP A1 - Adenacker, J. A1 - Gerhards, Benjamin A1 - Otten, Christian A1 - Schleser, Markus T1 - Laserstrahlschweißen von Aluminium-Kupfer-Werkstoffkombinationen für die Elektromobilität T2 - DVS CONGRESS 2021 Y1 - 2021 SN - 978-3-96144-146-4 N1 - DVS CONGRESS 2021, 14. – 17. September 2021, Essen. Große Schweißtechnische Tagung 2021, DVS CAMPUS 2021. DVS Berichte, Band: 371 SP - 31 EP - 38 PB - DVS Media GmbH CY - Düsseldorf ER - TY - JOUR A1 - Braun, Sebastian A1 - Cheng, Chi-Tsun A1 - Dowey, Steve A1 - Wollert, Jörg T1 - Performance evaluation of skill-based order-assignment in production environments with multi-agent systems JF - IEEE Journal of Emerging and Selected Topics in Industrial Electronics N2 - The fourth industrial revolution introduces disruptive technologies to production environments. One of these technologies are multi-agent systems (MASs), where agents virtualize machines. However, the agent's actual performances in production environments can hardly be estimated as most research has been focusing on isolated projects and specific scenarios. We address this gap by implementing a highly connected and configurable reference model with quantifiable key performance indicators (KPIs) for production scheduling and routing in single-piece workflows. Furthermore, we propose an algorithm to optimize the search of extrema in highly connected distributed systems. The benefits, limits, and drawbacks of MASs and their performances are evaluated extensively by event-based simulations against the introduced model, which acts as a benchmark. Even though the performance of the proposed MAS is, on average, slightly lower than the reference system, the increased flexibility allows it to find new solutions and deliver improved factory-planning outcomes. Our MAS shows an emerging behavior by using flexible production techniques to correct errors and compensate for bottlenecks. This increased flexibility offers substantial improvement potential. The general model in this paper allows the transfer of the results to estimate real systems or other models. KW - cyber-physical production systems KW - event-based simulation KW - multi-agent systems KW - digital factory KW - industrial agents Y1 - 2021 U6 - http://dx.doi.org/10.1109/JESTIE.2021.3108524 SN - 2687-9735 IS - Early Access PB - IEEE CY - New York ER - TY - JOUR A1 - Kasch, Susanne A1 - Schmidt, Thomas A1 - Jahn, Simon A1 - Eichler, Fabian A1 - Thurn, Laura A1 - Bremen, Sebastian T1 - Lösungsansätze und Verfahrenskonzepte zum Laserstrahlschmelzen von Glas JF - Schweissen und Schneiden Y1 - 2021 SN - 0036-7184 VL - 73 IS - Heft 1-2 SP - 32 EP - 39 PB - DVS Verlag CY - Düsseldorf ER - TY - CHAP A1 - Pfeiffer, Johann A1 - Balc, N. A1 - Gebhardt, Andreas T1 - Studie zur Untersuchung der Auswirkung von Fräsbahnstrategien auf die Oberflächenqualität von mittels SLM gefertigten Metallteilen T2 - Tagungsband 21. Nachwuchswissenschaftler*innenkonferenz N2 - Für die Herstellung von metallischen Bauteilen wird in der heutigen Zeit eine Vielzahl von Verfahren auf dem Markt angeboten. Dabei stehen die additiven im Wettbewerb zu den konventionellen Verfahren. Die erreichbaren Oberflächenqualitäten der additiven sind nicht mit denen spanender Verfahren vergleichbar. Für diesen Beitrag wurde analysiert, ob sich ein mittels Selektivem Laserschmelzen (SLM) additiv hergestellter Edelstahl hinsichtlich seiner Oberflächenqualität nach der Zerspanung von einem umgeformten konventionell hergestellten Edelstahl gleicher Sorte unterscheidet. Y1 - 2021 SN - 978-3-932886-36-2 N1 - 21. Nachwuchswissenschaftler*innenkonferenz, Ernst-Abbe-Hochschule Jena 26. und 27. Mai 2021 SP - 99 EP - 102 PB - Verlag Ernst-Abbe-Hochschule Jena CY - Jena ER - TY - CHAP A1 - Fiedler, Gerda A1 - Gottschlich-Müller, Birgit A1 - Melcher, Karin ED - Liu-Henke, Xiaobo ED - Durak, Umut T1 - Online-Prüfungen mit STACK Aufgaben T2 - Tagungsband ASIM Workshop STS/GMMS/EDU 2021 N2 - Wir stellen hier exemplarisch STACK Aufgaben vor, die frei von der Problematik sind, welche sich durch diverse Kommunikationswege und (webbasierte) Computer Algebra Systeme (CAS) ergibt. Daher sind sie insbesondere für eine Open-Book Online Prüfung geeignet, da eine faire Prüfungssituation gewährleistet werden kann. Y1 - 2021 SN - 978-3-901608-69-8 U6 - http://dx.doi.org/10.11128/arep.45 N1 - Virtueller Workshop, ASIM STS/GMMS & EDU 2021, 11.-12. März 2021 PB - ARGESIM Verlag CY - Wien ER - TY - CHAP A1 - Schmidt, Thomas A1 - Kasch, Susanne A1 - Eichler, Fabian A1 - Thurn, Laura T1 - Process strategies on laser-based melting of glass powder T2 - Lasers in Manufacturing Conference 2021 N2 - This paper presents the laser-based powder bed fusion (L-PBF) using various glass powders (borosilicate and quartz glass). Compared to metals, these require adapted process strategies. First, the glass powders were characterized with regard to their material properties and their processability in the powder bed. This was followed by investigations of the melting behavior of the glass powders with different laser wavelengths (10.6 µm, 1070 nm). In particular, the experimental setup of a CO2 laser was adapted for the processing of glass powder. An experimental setup with integrated coaxial temperature measurement/control and an inductively heatable build platform was created. This allowed the L-PBF process to be carried out at the transformation temperature of the glasses. Furthermore, the component’s material quality was analyzed on three-dimensional test specimen with regard to porosity, roughness, density and geometrical accuracy in order to evaluate the developed L-PBF parameters and to open up possible applications. KW - 3D-printing KW - glass KW - additive manufactureing KW - laser based powder fusion Y1 - 2021 ER - TY - CHAP A1 - Ulmer, Jessica A1 - Braun, Sebastian A1 - Wollert, Jörg T1 - Adaptive VR-Produktionsumgebungen für Evaluations- und Schulungstätigkeiten T1 - Adaptive VR production environments for evaluation and training purposes T2 - Automation 2021: Navigating towards resilient Production N2 - Industrie 4.0 stellt viele Herausforderungen an produzierende Unternehmen und ihre Beschäf-tigten. Innovative und effektive Trainingsstrategien sind erforderlich, um mit den sich schnell verändernden Produktionsumgebungen und neuen Fertigungstechnologien Schritt halten zu können. Virtual Reality (VR) bietet neue Möglichkeiten für On-the-Job, On-Demand- und Off-Premise-Schulungen. Diese Arbeit stellt ein neues VR Schulungssystem vor, welches sich flexible an unterschiedliche Trainingsobjekte auf Grundlage von Rezepten und CAD Modellen anpassen lässt. Das Konzept basiert auf gerichteten azyklischen Graphen und einem Level-system. Es ermöglicht eine benutzerindividuelle Lerngeschwindigkeit mittels visueller Ele-mente. Das Konzept wurde für einen mechanischen Anwendungsfall mit Industriekomponen-ten implementiert und in der Industrie 4.0-Modellfabrik der FH Aachen umgesetzt. N2 - Industry 4.0 poses many challenges for manufacturing companies and their employees. Inno-vative and effective training strategies are needed to keep pace with rapidly changing produc-tion environments and new manufacturing technologies. Virtual reality (VR) offers new oppor-tunities for on-the-job, on-demand, and off-premise training. This work presents a new VR training system that can be flexibly adapted to different training objects based on recipes and CAD models. The concept is based on directed acyclic graphs and a level system. It allows a user-individual learning speed by means of visual elements. The concept was implemented for a mechanical use case with industrial components and implemented in the industry 4.0 model factory of the FH Aachen University of Applied Sciences. Y1 - 2021 SN - 978-3-18-092392-5 U6 - http://dx.doi.org/10.51202/9783181023921-55 SN - 0083-5560 N1 - 22. Leitkongress der Mess- und Automatisierungstechnik, 9. und 30. Juni 2021. SP - 55 EP - 64 PB - VDI CY - Düsseldorf ER - TY - JOUR A1 - Ulmer, Jessica A1 - Braun, Sebastian A1 - Cheng, Chi-Tsun A1 - Dowey, Steve A1 - Wollert, Jörg T1 - Human-Centered Gamification Framework for Manufacturing Systems JF - Procedia CIRP N2 - While bringing new opportunities, the Industry 4.0 movement also imposes new challenges to the manufacturing industry and all its stakeholders. In this competitive environment, a skilled and engaged workforce is a key to success. Gamification can generate valuable feedbacks for improving employees’ engagement and performance. Currently, Gamification in workspaces focuses on computer-based assignments and training, while tasks that require manual labor are rarely considered. This research provides an overview of Enterprise Gamification approaches and evaluates the challenges. Based on that, a skill-based Gamification framework for manual tasks is proposed, and a case study in the Industry 4.0 model factory is shown. Y1 - 2020 U6 - http://dx.doi.org/10.1016/j.procir.2020.04.076 SN - 2212-8271 VL - 93 SP - 670 EP - 675 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Wollbrink, Moritz A1 - Maslo, Semir A1 - Zimmer, Daniel A1 - Abbas, Karim A1 - Arntz, Kristian A1 - Bergs, Thomas T1 - Clamping and substrate plate system for continuous additive build-up and post-processing of metal parts JF - Procedia CIRP N2 - The manufacturing share of laser powder bed fusion (L-PBF) increases in industrial application, but still many process steps are manually operated. Additionally, it is not possible to achieve tight dimensional tolerances or low surfaces roughness. Hence, a process chain has to be set up to combine additive manufacturing (AM) with further machining technologies. To achieve a continuous workpiece flow as basis for further industrialization of L-PBF, the paper presents a novel substrate system and its application on L-PBF machines and post-processing. The substrate system consists of a zero-point clamping system and a matrix-like interface of contact pins to be substantially connected to the workpiece within the L-PBF process. Y1 - 2020 U6 - http://dx.doi.org/10.1016/j.procir.2020.04.015 SN - 2212-8271 VL - 93 SP - 108 EP - 113 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Franko, Josef A1 - Du, Shengzhi A1 - Kallweit, Stephan A1 - Duelberg, Enno Sebastian A1 - Engemann, Heiko T1 - Design of a Multi-Robot System for Wind Turbine Maintenance JF - Energies N2 - The maintenance of wind turbines is of growing importance considering the transition to renewable energy. This paper presents a multi-robot-approach for automated wind turbine maintenance including a novel climbing robot. Currently, wind turbine maintenance remains a manual task, which is monotonous, dangerous, and also physically demanding due to the large scale of wind turbines. Technical climbers are required to work at significant heights, even in bad weather conditions. Furthermore, a skilled labor force with sufficient knowledge in repairing fiber composite material is rare. Autonomous mobile systems enable the digitization of the maintenance process. They can be designed for weather-independent operations. This work contributes to the development and experimental validation of a maintenance system consisting of multiple robotic platforms for a variety of tasks, such as wind turbine tower and rotor blade service. In this work, multicopters with vision and LiDAR sensors for global inspection are used to guide slower climbing robots. Light-weight magnetic climbers with surface contact were used to analyze structure parts with non-destructive inspection methods and to locally repair smaller defects. Localization was enabled by adapting odometry for conical-shaped surfaces considering additional navigation sensors. Magnets were suitable for steel towers to clamp onto the surface. A friction-based climbing ring robot (SMART— Scanning, Monitoring, Analyzing, Repair and Transportation) completed the set-up for higher payload. The maintenance period could be extended by using weather-proofed maintenance robots. The multi-robot-system was running the Robot Operating System (ROS). Additionally, first steps towards machine learning would enable maintenance staff to use pattern classification for fault diagnosis in order to operate safely from the ground in the future. Y1 - 2020 U6 - http://dx.doi.org/10.3390/en13102552 SN - 1996-1073 VL - 13 IS - 10 SP - Article 2552 PB - MDPI CY - Basel ER - TY - CHAP A1 - Braun, Sebastian A1 - Cheng, Chi-Tsun A1 - Dowey, Steve A1 - Wollert, Jörg T1 - Survey on Security Concepts to Adapt Flexible Manufacturing and Operations Management based upon Multi-Agent Systems T2 - 2020 IEEE 29th International Symposium on Industrial Electronics (ISIE) Y1 - 2020 U6 - http://dx.doi.org/10.1109/ISIE45063.2020.9152210 ER - TY - JOUR A1 - Raffeis, Iris A1 - Adjei-Kyeremeh, Frank A1 - Vroomen, Uwe A1 - Westhoff, Elmar A1 - Bremen, Sebastian A1 - Hohoi, Alexandru A1 - Bührig-Polaczek, Andreas T1 - Qualification of a Ni-Cu alloy for the laser powder bed fusion process (LPBF): Its microstructure and mechanical properties JF - Applied Sciences N2 - As researchers continue to seek the expansion of the material base for additive manufacturing, there is a need to focus attention on the Ni–Cu group of alloys which conventionally has wide industrial applications. In this work, the G-NiCu30Nb casting alloy, a variant of the Monel family of alloys with Nb and high Si content is, for the first time, processed via the laser powder bed fusion process (LPBF). Being novel to the LPBF processes, optimum LPBF parameters were determined, and hardness and tensile tests were performed in as-built conditions and after heat treatment at 1000 °C. Microstructures of the as-cast and the as-built condition were compared. Highly dense samples (99.8% density) were achieved after varying hatch distance (80 µm and 140 µm) with scanning speed (550 mm/s–1500 mm/s). There was no significant difference in microhardness between varied hatch distance print sets. Microhardness of the as-built condition (247 HV0.2) exceeded the as-cast microhardness (179 HV0.2.). Tensile specimens built in vertical (V) and horizontal (H) orientations revealed degrees of anisotropy and were superior to conventionally reported figures. Post heat treatment increased ductility from 20% to 31% (V), as well as from 16% to 25% (H), while ultimate tensile strength (UTS) and yield strength (YS) were considerably reduced. Y1 - 2020 U6 - http://dx.doi.org/10.3390/app10103401 SN - 2076-3417 N1 - Special Issue Materials Development by Additive Manufacturing Techniques VL - 10 IS - Art. 3401 SP - 1 EP - 15 PB - MDPI CY - Basel ER - TY - CHAP A1 - Ulmer, Jessica A1 - Wollert, Jörg A1 - Cheng, C. A1 - Dowey, S. T1 - Enterprise Gamification für produzierende mittelständische Unternehmen T2 - Shaping automation for our future: 21. Leitkongress Mess- u. Automatisierungstechnik : Automation 2020 : 30. Juni u. 01. Juli 2020 Y1 - 2020 SN - 978-3-18-092375-8 N1 - VDI-Berichte ; 2375 SP - 157 EP - 165 PB - VDI-Verlag CY - Düsseldorf ER - TY - CHAP A1 - Fateri, Miranda A1 - Gebhardt, Andreas T1 - Introduction to Additive Manufacturing T2 - 3D Printing of Optical Components N2 - Additive manufacturing (AM) works by creating objects layer by layer in a manner similar to a 2D printer with the “printed” layers stacked on top of each other. The layer-wise manufacturing nature of AM enables fabrication of freeform geometries which cannot be fabricated using conventional manufacturing methods as a one part. Depending on how each layer is created and bonded to the adjacent layers, different AM methods have been developed. In this chapter, the basic terms, common materials, and different methods of AM are described, and their potential applications are discussed. KW - Additive manufacturing KW - 3D printing KW - Digital manufacturing KW - Rapid prototyping KW - Rapid manufacturing Y1 - 2020 SN - 978-3-030-58960-8 U6 - http://dx.doi.org/10.1007/978-3-030-58960-8_1 SP - 1 EP - 22 PB - Springer CY - Cham ER - TY - CHAP A1 - Chavez Bermudez, Victor Francisco A1 - Wollert, Jörg T1 - Arduino based Framework for Rapid Application Development of a Generic IO-Link interface T2 - Kommunikation und Bildverarbeitung in der Automation N2 - The implementation of IO-Link in the automation industry has increased over the years. Its main advantage is it offers a digital point-to-point plugand-play interface for any type of device or application. This simplifies the communication between devices and increases productivity with its different features like self-parametrization and maintenance. However, its complete potential is not always used. The aim of this paper is to create an Arduino based framework for the development of generic IO-Link devices and increase its implementation for rapid prototyping. By generating the IO device description file (IODD) from a graphical user interface, and further customizable options for the device application, the end-user can intuitively develop generic IO-Link devices. The peculiarity of this framework relies on its simplicity and abstraction which allows to implement any sensor functionality and virtually connect any type of device to an IO-Link master. This work consists of the general overview of the framework, the technical background of its development and a proof of concept which demonstrates the workflow for its implementation. Y1 - 2020 SN - 978-3-662-59895-5 SN - 978-3-662-59894-8 U6 - http://dx.doi.org/10.1007/978-3-662-59895-5_2 N1 - Teil der Buchserie "Technologien für die intelligente Automation" (TIA,volume 12) SP - 21 EP - 33 PB - Springer Vieweg CY - Berlin ER - TY - JOUR A1 - Ulmer, Jessica A1 - Gröninger, Marc A1 - Braun, Sebastian A1 - Wollert, Jörg T1 - AR Arbeitsplätze: Für hochflexible und skalierbare Produktionsumgebungen JF - atp Magazin N2 - Trotz fortschreitender Automatisierung bleiben manuelle Tätigkeiten ein wichtiger Baustein der Fertigung kundenindividueller Produkte. Um die Mitarbeiter(innen) zu unterstützen und um eine effiziente Arbeit zu ermöglichen, werden zunehmend auf Augmented Reality (AR) basierende Systeme eingesetzt. Die vorgestellte Arbeit konzentriert sich auf die Entwicklung ganzheitlicher AR-Arbeitsplätze für den Einsatz in kleinen und mittleren Unternehmen (KMU). Das entwickelte AR- Handarbeitskonzept beinhaltet eine Just-in-time-Darstellung der Arbeitsaufgaben auf Werkstücken mit automatisierter Fertigungskontrolle. Als Reaktion auf kurze Produktlebenszyklen und hohe Produktvielfalten sind alle Komponenten auf maximale Flexibilität ausgelegt. Ein Umrüsten auf neue Produkte kann innerhalb von Minuten erfolgen. Y1 - 2020 U6 - http://dx.doi.org/10.17560/atp.v62i10.2495 SN - 2364-3137 VL - 62 IS - 10 PB - Vulkan-Verlag CY - Essen ER - TY - CHAP A1 - Kasch, Susanne A1 - Schmidt, Thomas A1 - Eichler, Fabian A1 - Thurn, Laura A1 - Jahn, Simon A1 - Bremen, Sebastian T1 - Solution approaches and process concepts for powder bed-based melting of glass T2 - Industrializing Additive Manufacturing. Proceedings of AMPA2020 N2 - In the study, the process chain of additive manufacturing by means of powder bed fusion will be presented based on the material glass. In order to reliably process components additively, new concepts with different solutions were developed and investigated. Compared to established metallic materials, the properties of glass materials differ significantly. Therefore, the process control was adapted to the material glass in the investigations. With extensive parameter studies based on various glass powders such as borosilicate glass and quartz glass, scientifically proven results on powder bed fusion of glass are presented. Based on the determination of the particle properties with different methods, extensive investigations are made regarding the melting behavior of glass by means of laser beams. Furthermore, the experimental setup was steadily expanded. In addition to the integration of coaxial temperature measurement and regulation, preheating of the building platform is of major importance. This offers the possibility to perform 3D printing at the transformation temperatures of the glass materials. To improve the component’s properties, the influence of a subsequent heat treatment was also investigated. The experience gained was incorporated into a new experimental system, which allows a much better exploration of the 3D printing of glass. Currently, studies are being conducted to improve surface texture, building accuracy, and geometrical capabilities using three-dimensional specimen. The contribution shows the development of research in the field of 3D printing of glass, gives an insight into the machine and process engineering as well as an outlook on the possibilities and applications. KW - Glass powder KW - Laser processing KW - Additive manufacturing KW - Melting KW - L-PBF Y1 - 2020 SN - 978-3-030-54333-4 (Print) SN - 978-3-030-54334-1 (Online) U6 - http://dx.doi.org/10.1007/978-3-030-54334-1_7 N1 - International Conference on Additive Manufacturing in Products and Applications. 01.-03. September 2020. Zurich, Switzerland SP - 82 EP - 95 PB - Springer CY - Cham ER - TY - JOUR A1 - Cosma, Cosmin A1 - Kessler, Julia A1 - Gebhardt, Andreas A1 - Campbell, Ian A1 - Balc, Nicolae T1 - Improving the Mechanical Strength of Dental Applications and Lattice Structures SLM Processed JF - Materials N2 - To manufacture custom medical parts or scaffolds with reduced defects and high mechanical characteristics, new research on optimizing the selective laser melting (SLM) parameters are needed. In this work, a biocompatible powder, 316L stainless steel, is characterized to understand the particle size, distribution, shape and flowability. Examination revealed that the 316L particles are smooth, nearly spherical, their mean diameter is 39.09 μm and just 10% of them hold a diameter less than 21.18 μm. SLM parameters under consideration include laser power up to 200 W, 250–1500 mm/s scanning speed, 80 μm hatch spacing, 35 μm layer thickness and a preheated platform. The effect of these on processability is evaluated. More than 100 samples are SLM-manufactured with different process parameters. The tensile results show that is possible to raise the ultimate tensile strength up to 840 MPa, adapting the SLM parameters for a stable processability, avoiding the technological defects caused by residual stress. Correlating with other recent studies on SLM technology, the tensile strength is 20% improved. To validate the SLM parameters and conditions established, complex bioengineering applications such as dental bridges and macro-porous grafts are SLM-processed, demonstrating the potential to manufacture medical products with increased mechanical resistance made of 316L. Y1 - 2020 U6 - http://dx.doi.org/10.3390/ma13040905 SN - 1996-1944 VL - 13 IS - 4 SP - 1 EP - 18 PB - MDPI CY - Basel ER - TY - JOUR A1 - Wilbring, Daniela A1 - Enning, Manfred A1 - Pfaff, Raphael A1 - Schmidt, Bernd T1 - Neue Perspektiven für die Bahn in der Produktions- und Distributionslogistik durch Prozessautomation JF - ETR - Eisenbahntechnische Rundschau Y1 - 2020 SN - 0013-2845 VL - 69 IS - 3 SP - 15 EP - 19 ER - TY - CHAP A1 - Engemann, Heiko A1 - Du, Shengzhi A1 - Kallweit, Stephan A1 - Ning, Chuanfang A1 - Anwar, Saqib T1 - AutoSynPose: Automatic Generation of Synthetic Datasets for 6D Object Pose Estimation T2 - Machine Learning and Artificial Intelligence. Proceedings of MLIS 2020 N2 - We present an automated pipeline for the generation of synthetic datasets for six-dimension (6D) object pose estimation. Therefore, a completely automated generation process based on predefined settings is developed, which enables the user to create large datasets with a minimum of interaction and which is feasible for applications with a high object variance. The pipeline is based on the Unreal 4 (UE4) game engine and provides a high variation for domain randomization, such as object appearance, ambient lighting, camera-object transformation and distractor density. In addition to the object pose and bounding box, the metadata includes all randomization parameters, which enables further studies on randomization parameter tuning. The developed workflow is adaptable to other 3D objects and UE4 environments. An exemplary dataset is provided including five objects of the Yale-CMU-Berkeley (YCB) object set. The datasets consist of 6 million subsegments using 97 rendering locations in 12 different UE4 environments. Each dataset subsegment includes one RGB image, one depth image and one class segmentation image at pixel-level. Y1 - 2020 SN - 978-1-64368-137-5 U6 - http://dx.doi.org/10.3233/FAIA200770 N1 - Frontiers in Artificial Intelligence and Applications. Vol 332 SP - 89 EP - 97 PB - IOS Press CY - Amsterdam ER - TY - JOUR A1 - Engemann, Heiko A1 - Du, Shengzhi A1 - Kallweit, Stephan A1 - Cönen, Patrick A1 - Dawar, Harshal T1 - OMNIVIL - an autonomous mobile manipulator for flexible production JF - Sensors Y1 - 2020 SN - 1424-8220 U6 - http://dx.doi.org/10.3390/s20247249 N1 - Special issue: Sensor Networks Applications in Robotics and Mobile Systems VL - 20 IS - 24, art. no. 7249 SP - 1 EP - 30 PB - MDPI CY - Basel ER - TY - CHAP A1 - Ulmer, Jessica A1 - Braun, Sebastian A1 - Cheng, Chi-Tsun A1 - Dowey, Steve A1 - Wollert, Jörg T1 - Gamified Virtual Reality Training Environment for the Manufacturing Industry Y1 - 2020 U6 - http://dx.doi.org/10.1109/ME49197.2020.9286661 SP - 1 EP - 6 ER - TY - CHAP A1 - Ulmer, Jessica A1 - Braun, Sebastian A1 - Cheng, Chi-Tsun A1 - Dowey, Steve A1 - Wollert, Jörg T1 - Simulation und Verifikation komplexer Handarbeitsprozesse durch die Kombination von Virtual Reality und Augmented Reality im Single-Piece-Workflow T2 - AALE 2020, 17. Fachkonferenz Angewandte Automatisierungstechnik in Lehre und Entwicklung, Automatisierung und Mensch-Technik-Interaktion, Leipzig, DE, 4.-6.3.2020 Y1 - 2020 SN - 978-3-8007-5180-8 SP - 1 EP - 4 ER - TY - BOOK A1 - Gebhardt, Andreas A1 - Kessler, Julia A1 - Thurn, Laura T1 - 3D printing : understanding additive manufacturing Y1 - 2019 SN - 978-1-56990-702-3 SN - 978-1-56990-703-0 ebook N1 - gedruckt in der Bereichsbibliothek Eupener Str. vorhanden PB - Hanser CY - München ET - 2. Auflage ER - TY - CHAP A1 - Franzen, Julian A1 - Stecken, Jannis A1 - Pfaff, Raphael A1 - Kuhlenkötter, Bernd T1 - Using the Digital Shadow for a Prescriptive Optimization of Maintenance and Operation : The Locomotive in the Context of the Cyber-Physical System T2 - Advances in Production, Logistics and Traffic N2 - In competition with other modes of transport, rail freight transport is looking for solutions to become more attractive. Short-term success can be achieved through the data-driven optimization of operations and maintenance as well as the application of novel strategies such as prescriptive maintenance. After introducing the concept of prescriptive maintenance, this paper aims to prove that vehicle-focused applications of this approach indeed have the potential to increase attractiveness. However, even greater advantages can be activated if data from the horizontal network of the vehicle is available. Drawing on the state of the art in research and technology in the field of cyber-physical systems (CPS) as well as digital twins and shadows, our work serves to design a system of systems for the horizontal interconnection of a rail vehicle and to conceptualize a draft for a digital twin of a locomotive. Y1 - 2019 SN - 978-3-030-13535-5 U6 - http://dx.doi.org/10.1007/978-3-030-13535-5_19 SP - 265 EP - 276 PB - Springer CY - Cham ER - TY - JOUR A1 - Bucur, Alexandru A1 - Lazarescu, Lucian A1 - Pop, Grigore Marian A1 - Achimas, Gheorghe A1 - Gebhardt, Andreas T1 - Tribological performance of biodegradable lubricants under different surface roughness of tools JF - Academic Journal of Manufacturing Engineering Y1 - 2019 SN - 1583-7904 VL - 17 IS - 1 SP - 172 EP - 178 ER - TY - JOUR A1 - Panc, Nicolae A1 - Contiu, Glad A1 - Bocanet, Vlad A1 - Thurn, Laura A1 - Sabau, Emilia T1 - The influence of cutting technology on surface wear hardness JF - Academic Journal of Manufacturing Engineering Y1 - 2019 SN - 1583-7904 VL - 17 IS - 3 SP - 205 EP - 210 ER - TY - CHAP A1 - Wiesen, Andreas A1 - Schleser, Markus T1 - Entwicklung einer Qualitätssicherung für das Laserstrahlschweißen im Vakuum mittels Bildverarbeitung T2 - Große Schweißtechnische Tagung Y1 - 2019 SN - 978-3-96144-066-5 N1 - DVS CONGRESS 2019, Große Schweißtechnische Tagung, DVS-Studentenkongress. 16. bis 17. September 2019, Düsseldorf. DVS-Berichte, Band 355 SP - 1 EP - 6 PB - DVS-Media CY - Düsseldorf ER - TY - CHAP A1 - Otten, Christian A1 - Gerhards, Benjamin A1 - Schleser, Markus A1 - Schwarz, A. A1 - Gebhardt, Andreas T1 - Innovative Laserschweißtechnologie für additiv gefertigte Bauteile T2 - Große Schweißtechnische Tagung Y1 - 2019 SN - 978-3-96144-066-5 N1 - DVS CONGRESS 2019, Große Schweißtechnische Tagung, DVS-Studentenkongress. 16. bis 17. September 2019, Düsseldorf. DVS-Berichte, Band 355 SP - 150 EP - 157 PB - DVS-Media CY - Düsseldorf ER - TY - BOOK A1 - Gebhardt, Andreas A1 - Kessler, Julia A1 - Schwarz, Alexander T1 - Produktgestaltung für die additive Fertigung Y1 - 2019 SN - 978-3-446-45285-5 N1 - gedruckt in der Bereichsbibliothek Eupener Str. unter der Signatur 21 ZHU 47 PB - Hanser CY - München ER - TY - JOUR A1 - Wilbring, Daniela A1 - Enning, Manfred T1 - Stromversorgung auf Güterwagen - Aktuelle Bemühungen zur Standardisierung JF - ETR - Eisenbahntechnische Rundschau Y1 - 2019 SN - 0013-2845 VL - 68 IS - 11 SP - 64 EP - 67 PB - DVV Media Group CY - Hamburg ER -